8
$\begingroup$

The problem is to show $$\int_{0}^{1} \frac{\operatorname{arsinh}x}{x\sqrt{1-x^4}} \,\mathrm{d}x = \frac{\pi^2}{8}$$ which is a typical integral emerges in many specific value, yet I have no more insight how to prove this one directly (any possible method other than the example below is acceptable).

Here is an example when the integral pops out in Legendre-chi function $\chi_2$, like (1) in this post, we have $$ \int_{0}^{\pi/2} {\arctan(\sin x) \,\mathrm{d}x} = 2\chi_2(\sqrt2-1) = \frac{\pi^2}{8} - \frac{\ln^{2}(\sqrt{2}+1)}{2} $$ which is a very typical integral, like in this post, from where we already know that $$ \int_{0}^{\pi/2} {\arctan(\sin x) \,\mathrm{d}x} = \int_{0}^{1} {\frac{\arctan x}{\sqrt{1-x^2}} \,\mathrm{d}x} = \int_{0}^{1} {\frac{\operatorname{arsinh}x}{x\sqrt{1+x^{2}}} \,\mathrm{d}x} $$ or $$ \int_{0}^{\pi/4} {\arcsin(\tan x) \,\mathrm{d}x} = \frac{\pi^2}{8} - \int_{0}^{\pi/2} {\arctan(\sin x) \,\mathrm{d}x} = \frac{\ln^{2}(\sqrt{2}+1)}{2} $$ Now, for $a<1$ consider the following parameterization $$ I(a) = \int_{0}^{\pi/4} {\arcsin(a\tan x) \,\mathrm{d}x} $$ let $u=\tan x$ and $y^2=(1-a^2u^2)/(1+u^2)$ in its derivative $$ \begin{aligned} I'(a) &= \int_{0}^{\pi/4} {\frac{\tan x}{\sqrt{1-a^2\tan^2x}} \,\mathrm{d}x} = \int_{0}^{1} {\frac{u}{(1+u^2)\sqrt{1-a^2u^2}} \,\mathrm{d}u} \\ &= \frac1{\sqrt{1+a^2}}\int_{\sqrt{(1-a^2)/2}}^{1} {\frac{\mathrm{d}y}{\sqrt{a^2+y^2}}} = \frac1{\sqrt{1+a^2}}\operatorname{arsinh}\left(\frac{y}{a}\right)\biggr|_{y=\sqrt{(1-a^2)/2}}^{1} \\ &= \frac{1}{\sqrt{1+a^{2}}} \operatorname{arsinh}\frac1{a} - \frac{1}{\sqrt{1+a^{2}}} \operatorname{arsinh}\sqrt{\frac{1-a^2}{2a^2}} \end{aligned} $$ Integrtation by parts gives $$ \begin{aligned} \int_{0}^{\pi/4} {\arcsin(\tan x) \,\mathrm{d}x} &= \int_{0}^{1} \frac{1}{\sqrt{1+a^{2}}} \operatorname{arsinh}\frac1{a} \,\mathrm{d}x - \int_{0}^{1} \frac{1}{\sqrt{1+a^{2}}} \operatorname{arsinh}\sqrt{\frac{1-a^2}{2a^2}} \,\mathrm{d}x \\ &= \operatorname{arsinh}^2(1) + \int_{0}^{1} {\frac{\operatorname{arsinh}a}{a\sqrt{1+a^{2}}}\,\mathrm{d}a} - \int_{0}^{1} \frac{\operatorname{arsinh}a}{a\sqrt{1-a^4}} \,\mathrm{d}a \end{aligned} $$ Combining all the special case of $\chi_2(\sqrt2-1)$ from above, we will find the required integral. And there are other equivalent form of required integral, for example $$ \int_{0}^{1} \frac{\operatorname{arsinh}x}{x\sqrt{1-x^4}} \,\mathrm{d}x = \frac1{2} \int_{0}^{1} \frac{1}{\sqrt{1+x^2}} \operatorname{arcosh}\frac1{x^2} \,\mathrm{d}x = \frac1{4} \int_{0}^{1} \frac{1}{\sqrt{x(1+x)}} \operatorname{arcosh}\frac1{x} \,\mathrm{d}x $$ Yet, I still can not find any convenience for further calculation.

Thanks in advance for any help.

$\endgroup$
2
  • $\begingroup$ Integrate[ArcSinh[x]/(x*Sqrt[1 - x^4]), {x, 0, 1}] // FullSimplify Mathematica shows the result is $\frac{3 \Gamma \left(\frac{1}{4}\right)^2 \, _3F_2\left(\frac{1}{4},\frac{1}{4},\frac{1}{4};\frac{1}{2},\frac{5}{4};1\right)-2 \Gamma \left(\frac{3}{4}\right)^2 \, _3F_2\left(\frac{3}{4},\frac{3}{4},\frac{3}{4};\frac{3}{2},\frac{7}{4};1\right)}{12 \sqrt{2 \pi }}$ $\endgroup$
    – 138 Aspen
    Commented Jan 10 at 1:07
  • $\begingroup$ @138Aspen Yes, I know the hyper-geometric result, and the ${}_3F_2$ at 1 can be cracked by Dixon's identity. Yet I still think there must be some other elementary method, hyper-geometric function is so overpowered to students. $\endgroup$ Commented Jan 10 at 1:13

4 Answers 4

13
$\begingroup$

Utilize $$\int_{0}^{\pi/2}\frac{\sin t}{1+x^2\sin^2 t}dt = \frac{\text{arcsinh}{\>x}}{x\sqrt{1+x^2}} $$ to integrate \begin{align} &\int_{0}^{1} \frac{\operatorname{arsinh}x}{x\sqrt{1-x^4}} {d}x \\ =&\int_0^1 \int_0^{\pi/2}\frac{\sin t}{\sqrt{1-x^2}(1+x^2\sin^2 t)}dt\ dx \\ =& \ \frac\pi2 \int_0^{\pi/2}\frac{\sin t}{\sqrt{1+\sin^2t}}dt = \frac{\pi^2}{8} \end{align}

$\endgroup$
3
  • 1
    $\begingroup$ What a brilliant solution! I wonder how did you notice the first step. $\endgroup$
    – pie
    Commented Jan 12 at 12:24
  • 1
    $\begingroup$ @pie - I worked it out in this post $\endgroup$
    – Quanto
    Commented Jan 12 at 14:36
  • $\begingroup$ This is impressive that you remembered your work from +2 years $\endgroup$
    – pie
    Commented Jan 12 at 16:24
7
$\begingroup$

Feynman’s Trick

Noting that $$ I=\int_0^1 \frac{\sinh ^{-1} x}{x \sqrt{1-x^4}} d x=\int_0^1 \frac{\tanh ^{-1}\left(\frac{x}{\sqrt{1+x^2}}\right)}{x \sqrt{1-x^4}} d x $$ Let’s consider the parametrised integral $$ I(a)=\int_0^1 \frac{\tanh ^{-1} \frac{x a}{\sqrt{1+x^2}}}{x \sqrt{1-x^4}} d x $$ Differentiating $I(a)$ w.r.t. $a$ yields $$ \begin{aligned} I^{\prime}(a) & =\int_0^1 \frac{1}{1-\frac{x^2 x^2}{1+x^2}} \frac{d x}{\left(1+x^2\right) \sqrt{1-x^2}} \\ & =\int_0^1 \frac{1}{\left(1-a^2\right) x^2+1} \frac{d x}{\sqrt{1-x^2} } \\ & =\frac{\pi}{2 \sqrt{2-a^2}} \quad (\textrm{ via }x\mapsto \sin x) \end{aligned} $$ Integrating $I’(a)$ from $a=0$ to $1$ brings us $$ \boxed{I=\frac{\pi}{2} \int_0^1 \frac{d a}{\sqrt{2-a^2}}=\frac{\pi}{2} \cdot \frac{\pi}{4}=\frac{\pi^2}{8}} $$

$\endgroup$
6
$\begingroup$

$$\int_0^1 \frac{\operatorname{arsinh}x}{x\sqrt{1-x^4}}dx\overset{IBP}=\frac12\int_0^1 \frac{\operatorname{arctanh}\left(\sqrt{1-x^2}\sqrt{1+x^2}\right)}{\sqrt{1+x^2}}dx$$

$$=\frac12\int_0^1 \int_0^\sqrt{1-x^2}\frac{1}{1-(1+x^2)y^2}dydx=\frac12\int_0^1 \int_0^\sqrt{1-y^2}\frac{1}{1-y^2(1+x^2)}dxdy$$

$$=\frac12\int_0^1 \frac{\operatorname{arctanh} y}{y\sqrt{1-y^2}}dy\overset{y\to \frac{1-y}{1+y}}=-\frac14 \int_0^1 \frac{\ln y}{\sqrt y (1-y)}dy\overset{\sqrt y \to y}=-\int_0^1 \frac{\ln y}{1-y^2}dy$$

$$=-\sum_{n=0}^\infty \int_0^1 y^{2n}\ln y\, dy=\sum_{n=0}^\infty \frac{1}{(2n+1)^2}=\frac34\sum_{n=1}^\infty \frac{1}{n^2}=\frac{\pi^2}{8}$$

$\endgroup$
1
  • 1
    $\begingroup$ Thank you, Zacky, just teaching me another useful method. $\endgroup$ Commented Jan 10 at 1:30
3
$\begingroup$

With a somewhat roundabout exchange of variables and integration by parts, we can obtain the following equivalent forms:

$$\newcommand{\arsinh}{\operatorname{arsinh}} \newcommand{\artanh}{\operatorname{artanh}} \begin{align*} I &= \int_0^1 \frac{\arsinh x}{x \sqrt{1-x^4}} \, dx \\ &= \int_0^1 \frac{\artanh \frac x{\sqrt{1+x^2}}}{x \sqrt{1-x^4}} \, dx \\ &= \int_0^\tfrac1{\sqrt2} \frac{\artanh y}{y\sqrt{1-2y^2}} \, dy & y=\frac x{\sqrt{1+x^2}} \\ &= \int_0^\tfrac1{\sqrt2} \frac{\artanh \sqrt{1-2y^2}}{1-y^2} \, dy & \rm IBP \\ &= \sqrt2 \int_0^1 \frac{z \artanh z}{\sqrt{1-z^2} (1+z^2)} \, dz & z=\sqrt{1-2y^2} \\ &= \sqrt2 \int_0^\tfrac\pi2 \frac{\sin w \log\frac{1+\sin w}{\cos w}}{1+\sin^2w} \, dw & w=\arcsin z \\ &= \sqrt2 \int_1^\infty \frac{v^2-1}{v^4+1} \log v \, dv & v=\sec w+\tan w \\ &= \sqrt2 \int_0^1 \frac{u^2-1}{u^4+1} \log u \, du & u=\frac1v \\ \end{align*}$$

the last of which can be evaluated to trigammas by exploiting Taylor series, integrating by parts once more, and recalling the trigamma reflection formula.

$$\begin{align*} I &= \sqrt2 \sum_{n\ge0} (-1)^n \int_0^1 \left(u^{4n+2} - u^{4n}\right) \log u \, du \\ &= \sqrt2 \sum_{n\ge0} (-1)^n \left[\frac1{(4n+1)^2} - \frac1{(4n+3)^2}\right] \\ &= \frac1{32\sqrt2} \sum_{n\ge0} \left[\frac1{\left(n+\frac18\right)^2} - \frac1{\left(n+\frac38\right)^2} - \frac1{\left(n+\frac58\right)^2} + \frac1{\left(n+\frac78\right)^2}\right] \\ &= \frac{\left[\psi'\left(\frac18\right) + \psi'\left(\frac78\right)\right] - \left[\psi'\left(\frac38\right) + \psi'\left(\frac58\right)\right]}{32\sqrt2} \\ &= \frac{\pi^2}{32\sqrt2} \left(\csc^2\frac\pi8 - \csc^2\frac{3\pi}8\right) = \boxed{\frac{\pi^2}8} \end{align*}$$

since $\sin\dfrac\pi8=\dfrac{\sqrt{2-\sqrt2}}2$.

$\endgroup$

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .