5
$\begingroup$

How to prove that

$$4\int_0^1\frac{\chi_2(x)\operatorname{Li}_2(x)}{x}\ dx+\int_0^1\frac{\log(1-x)\log^2(x)\log(1+x)}{x}\ dx=\frac{29}4\zeta(2)\zeta(3)-\frac{91}8\zeta(5)$$

Where $\chi_2(x)=\sum_{n=1}^\infty\frac{x^{2n-1}}{(2n-1)^2}$ is the Legendre Chi function and $ \operatorname{Li}_2(x)=\sum_{n=1}^\infty\frac{x^n}{n^2}$ is the Dilogarithm function.

This integral was proposed by Cornel.

$\endgroup$
0

2 Answers 2

7
$\begingroup$

Using the relation between the Chi function and Dilogarithm we can rewrite the first integral as: $$4\int_0^1\frac{\chi_2(x)\operatorname{Li}_2(x)}{x}dx=2\int_0^1\frac{\operatorname{Li}^2_2(x)}{x} dx-2\int_0^1\frac{\operatorname{Li}_2(x)\operatorname{Li}_2(-x)}{x} dx$$ You solved the first part here. $$\int_0^1\frac{\operatorname{Li}_2^2(x)}{x}dx=2\zeta(2)\zeta(3)-3\zeta(5)$$ And the second one is found here: $$\int_0^1\frac{\operatorname{Li}_2(x){\operatorname{Li}_2(-x)}}{x}dx =-\frac54\zeta(2)\zeta(3)+\frac{59}{32}\zeta(5)$$ Combinging the two results from above yields: $$\boxed{4\int_0^1\frac{\chi_2(x)\operatorname{Li}_2(x)}{x}dx=\frac{13}{2}\zeta(2)\zeta(3)-\frac{155}{16}\zeta(5)}$$ The second integral is solved here. $$\boxed{\int_0^1\frac{\ln(1-x)\ln^2 x\ln(1+x)}{x}dx=\frac34 \zeta(2)\zeta(3)-\frac{27}{16}\zeta(5)}$$ Combining the two boxed results gives: $$4\int_0^1\frac{\chi_2(x)\operatorname{Li}_2(x)}{x} dx+\int_0^1\frac{\ln(1-x)\ln^2(x)\ln(1+x)}{x} dx=\frac{29}4\zeta(2)\zeta(3)-\frac{91}8\zeta(5)$$


Remark.

We know from above that: $$\int_0^1\frac{\chi_2(x)\operatorname{Li}_2(x)}{x}dx=\frac{13}{8}\zeta(2)\zeta(3)-\frac{155}{64}\zeta(5)$$ But integating by parts also gives us: $$\sum_{n=0}^\infty \frac{1}{(2n+1)^2}\int_0^1 x^{2n}\operatorname{Li}_2 (x)dx$$$$\overset{IBP}=\sum_{n=0}^\infty \frac{\operatorname{Li}_2(1)}{(2n+1)^3}+\sum_{n=0}^\infty \frac{1}{(2n+1)^3}\int_0^1 x^{2n}\ln(1-x)dx$$ $$=\frac{7}{8}\zeta(2)\zeta(3) +\sum_{n=0}^\infty \frac{H_{2n+1}}{(2n+1)^4}$$ Which results in: $$\sum_{n=0}^\infty \frac{H_{2n+1}}{(2n+1)^4}=\frac34\zeta(2)\zeta(3)-\frac{155}{64}\zeta(5)$$ Alteratively one can compute that sum in a different way to find the value of the first integral.

$\endgroup$
7
  • $\begingroup$ Nice but that's the common way to go. t's a mind blowing problem because when we evaluate the two integrals together the hard sums will cancel out and we left with only easy sum. And going this way, solution will be very short very easy. $\endgroup$ Commented Jun 15, 2019 at 15:29
  • $\begingroup$ I agree with what you said. Also I didn't claim this is the best way. $\endgroup$
    – Zacky
    Commented Jun 15, 2019 at 15:34
  • $\begingroup$ Nice solution though. $\endgroup$ Commented Jun 15, 2019 at 15:38
  • $\begingroup$ @AliShather Do you have a solution too? $\endgroup$
    – Zacky
    Commented Jun 15, 2019 at 15:38
  • 1
    $\begingroup$ I have not solved it yet. I'll try today. $\endgroup$ Commented Jun 15, 2019 at 15:51
3
$\begingroup$

This approach is pretty identical to Cornel's solution posted on his FB page.

using the fact that $\quad\displaystyle \sum_{n=1}^\infty a_{2n}=\frac12\left(\sum_{n=1}^\infty a_n+\sum_{n=1}^\infty (-1)^na_n\right),\ $ we have \begin{align} \sum_{n=1}^\infty\frac{x^{2n-1}}{(2n-1)^2}&=\sum_{n=0}^\infty\frac{x^{2n+1}}{(2n+1)^2}=\frac12\left(\sum_{n=0}^\infty\frac{x^{n+1}}{(n+1)^2}+\sum_{n=0}^\infty(-1)^n\frac{x^{n+1}}{(n+1)^2}\right)\\ &=\frac12\left(\sum_{n=1}^\infty\frac{x^n}{n^2}-\sum_{n=1}^\infty(-1)^n\frac{x^n}{n^2}\right)=\frac12\left(\operatorname{Li}_2(x)-\operatorname{Li}_2(-x)\right) \end{align}

then, the first integral: \begin{align} I_1&=4\int_0^1\left(\sum_{n=1}^\infty\frac{x^{2n-1}}{(2n-1)^2}\right)\frac{\operatorname{Li}_2(x)}{x}\ dx\\ &=2\sum_{n=1}^\infty\left(\frac1{n^2}-\frac{(-1)^n}{n^2}\right)\int_0^1x^{n-1}\operatorname{Li}_2(x)\ dx\\ &=2\sum_{n=1}^\infty\left(\frac1{n^2}-\frac{(-1)^n}{n^2}\right)\left(\frac{\zeta(2)}{n}-\frac{H_n}{n^2}\right)\\ &=\zeta(2)\zeta(3)-2\zeta(2)\operatorname{Li}_3(-1)-2\sum_{n=1}^\infty\frac{H_n}{n^4}+2\sum_{n=1}^\infty(-1)^n\frac{H_n}{n^4}\\ &\boxed{=\frac72\zeta(2)\zeta(3)-2\sum_{n=1}^\infty\frac{H_n}{n^4}+2\sum_{n=1}^\infty(-1)^n\frac{H_n}{n^4}} \end{align} and the second integral:

using the following identity proved by Cornel and can be found in his book, (Almost) Impossible Integrals, Sums and Series. $\quad\displaystyle\ln(1-x)\ln(1+x)=-\sum_{n=1}^\infty\left(\frac{H_{2n}-H_n}{n}+\frac1{2n^2}\right)x^{2n}$.

multiply both sides by $\displaystyle\frac{\ln^2x}{x}$ then integrate from $0$ to $1$, we get \begin{align} I_2&=\sum_{n=1}^\infty\left(\frac{H_{2n}-H_n}{n}+\frac1{2n^2}\right)\int_0^1x^{2n-1}\ln^2x\ dx\\ &=\sum_{n=1}^\infty\left(\frac{H_{2n}-H_n}{n}+\frac1{2n^2}\right)\left(\frac{2}{(2n)^3}\right)\\ &=-4\sum_{n=1}^\infty\frac{H_{2n}}{(2n)^4}+\frac14\sum_{n=1}^\infty\frac{H_n}{n^4}-\frac18\zeta(5)\\ &=-2\sum_{n=1}^\infty\frac{H_n}{n^4}-2\sum_{n=1}^\infty(-1)^n\frac{H_n}{n^4}+\frac14\sum_{n=1}^\infty\frac{H_n}{n^4}-\frac18\zeta(5)\\ &\boxed{=-2\sum_{n=1}^\infty(-1)^n\frac{H_n}{n^4}-\frac74\sum_{n=1}^\infty\frac{H_n}{n^4}-\frac18\zeta(5)} \end{align} Finally \begin{align} I&=I_1+I_2\\ &=\frac72\zeta(2)\zeta(3)-\frac18\zeta(5)-\frac{15}4\sum_{n=1}^\infty\frac{H_n}{n^4}\\ &=\frac72\zeta(2)\zeta(3)-\frac18\zeta(5)-\frac{15}4\left(3\zeta(5)-\zeta(2)\zeta(3)\right)\\ &\boxed{=\frac{29}{4}\zeta(2)\zeta(3)-\frac{91}{8}\zeta(5)} \end{align}

$\endgroup$
3
  • $\begingroup$ Oh, this way you got rid of $\sum\limits_{n\ge 1}\frac{(-1)^n H_n}{n^4}$, nice :) $\endgroup$
    – Zacky
    Commented Jun 15, 2019 at 18:50
  • $\begingroup$ Btw, small typo in the end. It's $\frac{29}{4}\zeta(2)\zeta(3)$. $\endgroup$
    – Zacky
    Commented Jun 15, 2019 at 21:23
  • $\begingroup$ thanks Zacky. its done. $\endgroup$ Commented Jun 15, 2019 at 21:31

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .