Skip to main content

All Questions

0 votes
1 answer
44 views

Most generic form of refractive index tensors

The refractive index of a material is in general a $3x3$ tensor (as in the case of birefringent crystals). From literature, it seems that in the case of transparent crystals, this tensor is in general ...
Victor Liu's user avatar
-1 votes
1 answer
78 views

Inconvenience of speed of light in optic fiber

As far as I'm concerned, optic fiber is great in order to transport information quickly using light. Since light needs to undergo total internal reflection every single time it hits the walls of the ...
Lagrangiano's user avatar
  • 1,629
1 vote
2 answers
70 views

Why total reflection happens at only 1 angle?

The critical angle can be intuitively understood by Snell's law.If the incident medium has a bigger diffraction index than the refracted medium then according to Snell's law the refracted ray will be ...
Root Groves's user avatar
2 votes
0 answers
26 views

Definition of the displacement field in classical field Lagrangian

In a BSM related paper (in appendix B), the authors use an effective Lagrangian $\mathcal{L}_{EFT}$, and define the following fields: $$ \mathbf{D} = \frac{\partial\mathcal{L}_{EFT}}{\partial\mathbf{E}...
Doron Behar's user avatar
0 votes
1 answer
119 views

Wave propagation in inhomogeneous media

There is a problem I'm trying to solve for some time now and is about the standard (?) approximation that it is made when one tries to solve the Helmholtz equation in inhomogeneous media, that is \...
user1524841's user avatar
1 vote
0 answers
32 views

Microscopic model of complex refractive index

In my Electromagnetic Optics class, we tried to reconcile the microscopic (optical) properties of matter with its macroscopic counterparts, and one of the most challenging properties is the (complex) ...
Lagrangiano's user avatar
  • 1,629
1 vote
2 answers
72 views

On the (variable?) nature of $\epsilon_0$ and $\mu_0$

In electromagnetism, the electric displacement field D represents the distribution of electric charges in a given medium resulting from the presence of an electric field E. Its relation to ...
Juan Moreno's user avatar
3 votes
1 answer
100 views

Can the refractive index of a medium be negative?(<0)

Recently I was asked in a test what would happen if the refractive index of a medium was negative. Is it possible really? The refractive index is the ratio of the speed of light in a vacuum and ...
Sukuna's user avatar
  • 41
0 votes
0 answers
42 views

How to derive the effective permeability for split ring resonator?

in Pendry's 1999 paper "Magnetism from Conductors and Enhanced Nonlinear Phenomena", he give the formula of effective relative permeability $mu_r$ of split ring resonator (SRR) which is one ...
Benjamin Zao's user avatar
0 votes
0 answers
31 views

Phase jump at medium border with EM wave

I have been reading a book about electrodynamics and I have stumbled upon the following matter which is, to me , contradictory. When the electromagnetic wave changes medium, it is subject to certain ...
DominikR's user avatar
0 votes
1 answer
56 views

Effective Refractive index of a mode less than that of the cladding refractive index?

Can the effective refractive index be less than the cladding if the waveguide width is very small. For example for the case of a ~100 nm waveguide.
user35115's user avatar
0 votes
1 answer
46 views

Help with dispersion relations for EM waves in anisotropic dielectric materials

I am really struggling to understand the following dispersion relations which we derived in class. For an electric field in the z-direction, we have: $$k^2_x + k^2_y = \frac{\omega^2}{c^2}n_z^2\tag{1}$...
Thomas's user avatar
  • 155
0 votes
2 answers
66 views

How to use the boundary conditions of electromagnetic waves to derive the refraction law of light?

In my book it says we can use the boundary conditions of electromagnetic waves to derive the refraction law of light. How to derive it?
Raffaella's user avatar
  • 353
0 votes
2 answers
53 views

How to increase the angle of light (without going from a higher to lower index of refraction)?

I would like a device to spread out/increase the angle of rays in a light source. In other words, I would like to reproduce the behaviour of light traveling from an area of higher to lower index of ...
Tom's user avatar
  • 1
1 vote
1 answer
66 views

When I see a rainbow in the sky, is the full EM spectrum included? does it form a disc and not just a circular arc?

If you could actually see every part of the EM spectrum from a rainbow, would the circle be completely filled in? and would it also extend further outwards from the visible spectrum?
Franklin Montez's user avatar

15 30 50 per page
1
2 3 4 5
9