Skip to main content

All Questions

4 votes
0 answers
220 views

How can we prove a closed form for $\frac{1}{8} \text{Li}_2\left(\frac{2+\sqrt{3}}{4} \right)+\text{Li}_2\left(2+\sqrt{3}\right)$?

I have been working on a problem in number theory that I have reduced to the problem of showing that the two-term linear combination $$ \frac{1}{8} \text{Li}_2\left(\frac{2+\sqrt{3}}{4} \right) + \...
John M. Campbell's user avatar
0 votes
1 answer
130 views

Closed form for $\rm{Li }_2\left( -{\frac {i\sqrt {3}}{3}} \right)$

In my personal research with Maple i find this closed form : $$\operatorname{Li }_2\left( -{\frac {i\sqrt {3}}{3}} \right)={\frac {{\pi}^{2}}{24}}+{\frac {\ln \left( 2 \right) \ln \left( 3 \right) }...
Dens's user avatar
  • 303
10 votes
1 answer
790 views

A generalized "Rare" integral involving $\operatorname{Li}_3$

In my previous post, it can be shown that $$\int_{0}^{1} \frac{\operatorname{Li}_2(-x)- \operatorname{Li}_2(1-x)+\ln(x)\ln(1+x)+\pi x\ln(1+x) -\pi x\ln(x)}{1+x^2}\frac{\text{d}x}{\sqrt{1-x^2} } =\...
Setness Ramesory's user avatar
17 votes
1 answer
1k views

A rare integral involving $\operatorname{Li}_2$

A rare but interesting integral problem: $$\int_{0}^{1} \frac{\operatorname{Li}_2(-x)- \operatorname{Li}_2(1-x)+\ln(x)\ln(1+x)+\pi x\ln(1+x) -\pi x\ln(x)}{1+x^2}\frac{\text{d}x}{\sqrt{1-x^2} } =\...
Setness Ramesory's user avatar
8 votes
2 answers
494 views

Finding $\int_{1}^{\infty} \frac{1}{1+x^2} \frac{\operatorname{Li}_2\left ( \frac{1-x}{2} \right ) }{\pi^2+\ln^2\left(\frac{x-1}{2}\right)}\text{d}x$

Prove the integral $$\int_{1}^{\infty} \frac{1}{1+x^2} \frac{\operatorname{Li}_2\left ( \frac{1-x}{2} \right ) }{ \pi^2+\ln^2\left ( \frac{x-1}{2} \right ) }\text{d}x =\frac{96C\ln2+7\pi^3}{12(\pi^2+...
Setness Ramesory's user avatar
1 vote
0 answers
128 views

Conjectured closed form for ${\it {Li_2}} \left( 1-{\frac {\sqrt {2}}{2}}-i \left( 1-{\frac {\sqrt { 2}}{2}} \right) \right)$

With Maple i find this closed form: ${\it {Li_2}} \left( 1-{\frac {\sqrt {2}}{2}}-i \left( 1-{\frac {\sqrt { 2}}{2}} \right) \right)$=$-{\frac {{\pi}^{2}}{64}}-{\frac { \left( \ln \left( 1+\sqrt {2} ...
Dens's user avatar
  • 303
0 votes
1 answer
126 views

Evaluate $\int_{{\frac {\pi}{8}}}^{{\frac {7\,\pi}{8}}}\!{\frac {\ln \left( 1- \cos \left( t \right) \right) }{\sin \left( t \right) }}\,{\rm d}t$

I'm interested in this integral: $\int_{{\frac {\pi}{8}}}^{{\frac {7\,\pi}{8}}}\!{\frac {\ln \left( 1- \cos \left( t \right) \right) }{\sin \left( t \right) }}\,{\rm d}t$ I found this particular ...
Dens's user avatar
  • 303
5 votes
1 answer
248 views

Closed form evaluation of a trigonometric integral in terms of polylogarithms

Define the function $\mathcal{K}:\mathbb{R}\times\mathbb{R}\times\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\times\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\rightarrow\mathbb{R}$ via the definite ...
David H's user avatar
  • 30.7k
2 votes
1 answer
247 views

Finding a closed-form for the sum $\sum_{n=1}^{\infty}\frac{\left(-1\right)^{n}H_{2n}}{n^{4}}$

Let $\mathcal{S}$ denote the sum of the following alternating series: $$\mathcal{S}:=\sum_{n=1}^{\infty}\frac{\left(-1\right)^{n}H_{2n}}{n^{4}}\approx-1.392562725547,$$ where $H_{n}$ denotes the $n$-...
David H's user avatar
  • 30.7k
3 votes
1 answer
502 views

Generating function of the polylogarithm.

Let $\operatorname{Li}_s(z)$ denote the polylogarithm function $$\operatorname{Li}_s(z) = \sum_{k=1}^\infty \frac{z^k}{k^s}.$$ Does there exists a closed form or a known function which generates the ...
Dr Potato's user avatar
  • 812
2 votes
1 answer
126 views

Closed form evaluation of a class of inverse hyperbolic integrals

Define the function $\mathcal{I}:\mathbb{R}_{>0}^{2}\rightarrow\mathbb{R}$ via the definite integral $$\mathcal{I}{\left(a,b\right)}:=\int_{0}^{1}\mathrm{d}x\,\frac{\operatorname{arsinh}{\left(ax\...
David H's user avatar
  • 30.7k
7 votes
1 answer
196 views

Iterated integral involving polylogarithms

To establish notation the polylogarithm Li$_n(x)$ has the power series expansion $$ \text{Li}_n(x)= \sum_{k=1}^\infty \frac{x^k}{k^n} $$ and the Riemann zeta can be considered the special value $\zeta(...
user321120's user avatar
  • 6,760
3 votes
1 answer
368 views

Challenging integral $I=\int_0^{\pi/2}x^2\frac{\ln(\sin x)}{\cos x}dx$

My friend offered to solve this integral. $$I=\int_0^{\pi/2}x^2\frac{\ln(\sin x)}{\cos x}dx=\frac{\pi^4}{32}-{4G^2} $$ Where G is the Catalan's constant. $$I=\int _0^{\infty }\frac{\arctan ^2\left(u\...
user178256's user avatar
  • 5,507
4 votes
1 answer
286 views

Evaluate $\int^1_0 x^a (1-x)^b \operatorname{Li}_2 (x)\, \mathrm dx$

For what $a,b$ the integral $$\int^1_0 x^a(1-x)^b\operatorname{Li}_2 (x)\, \mathrm dx$$ has a closed form solution? I tried to solve it by expanding dilogarithm function, or by reducing it to linear ...
Machinato's user avatar
  • 2,903
6 votes
0 answers
306 views

Does there exist a closed form for $\int_0^{\pi/2}\frac{x^2\ \text{Li}_2(\sin^2x)}{\sin x}dx$?

I am not sure if there exists a closed form for $$I=\int_0^{\pi/2}\frac{x^2\ \text{Li}_2(\sin^2x)}{\sin x}dx$$ which seems non-trivial. I used the reflection and landen's identity, didn't help much. ...
Ali Shadhar's user avatar
  • 25.8k

15 30 50 per page
1
2
3 4 5
9