1
$\begingroup$

enter image description here Question: In the figure,

$A_0A_1,A_2A_3,A_4A_3...$ are all perpendicular to $L_1$

$A_1A_2,A_3A_4,A_5A_6...$ ​ are all perpendicular to $L_2$

​If $A_0A_1=1$

​And $A_0A_1+A_1A_2+A_2A_3+A_3A_4......\infty =2(2+ \sqrt3)$

Find $\theta$

I figured that all the triangles formed are similar and hence the $\cos θ$ is constant.

Now for finding the sum, $A_0A_1=A_1A_2=... =\ cos θ$

$S = \cos θ+\cos θ+\cos θ+....\mathrm{(infinite\ times)} = 2(2+ √3)$

how can I determine $\theta$?

$\endgroup$
2

1 Answer 1

1
$\begingroup$

Your mistake is critical, First of all, $A_0A_1=1\neq \cos \theta$ , If $\theta\neq0$, Which should be necessary, So that triangle is formed

Now,

$$A_1A_2=\cos \theta$$

$$A_2A_3=\cos^2\theta$$

$$A_3A_4=\cos^3\theta$$

$$A_4A_5=\cos^4\theta$$

$$.$$$$.$$$$.$$

$$.$$

hence the sum $$S=1+\cos\theta+\cos^2\theta+\cos^3\theta....$$

which Is a $G.P$

Hence

$$S=\frac{1}{1-\cos \theta}$$

which leads to

$$\frac{1}{1-\cos \theta}=2(2+\sqrt3)$$

Solving for $\cos \theta$ yields

$$\cos \theta=\frac{\sqrt3}{2}$$

The only possible angle for a triangle gives $$\theta =\frac{\pi}{6}$$Where $\theta$ is in radians

$\endgroup$

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .