4
$\begingroup$

I want to evaluate function defined by following sum: $$\sum_{n=1}^\infty\frac{n^x}{n!}$$ I was thinking about writing Taylor series expansion for it. However my try resulted in sum that looks even harder to calculate: $$\sum_{n=1}^{\infty}\frac{\ln^k(n)}{n!}$$Thanks for all the help in solving this problem.

$\endgroup$
3
  • 1
    $\begingroup$ How is $x$ defined? $\endgroup$
    – Dinesh
    Commented Jun 3, 2020 at 9:00
  • $\begingroup$ $x \in \mathbb R$ this sum is a function. $\endgroup$ Commented Jun 3, 2020 at 9:03
  • $\begingroup$ Special case: write $$\sum_{n=1}^\infty\frac{n^{1/2}}{n!}$$ in closed form. Has this already been asked in math.se? $\endgroup$
    – GEdgar
    Commented Jun 3, 2020 at 11:23

4 Answers 4

1
$\begingroup$

For $x=0$, you recognize

$$\sum_{n=1}^\infty\frac1{n!}=e-1.$$

For $x=1$,

$$\sum_{n=1}^\infty\frac n{n!}=\sum_{n=1}^\infty\frac1{(n-1)!}=e.$$

For $x=2$,

$$\sum_{n=1}^\infty\frac{n^2}{n!}=\sum_{n=1}^\infty\frac{n(n-1)+n}{n!}=\sum_{n=2}^\infty\frac1{(n-2)!}+\sum_{n=1}^\infty\frac1{(n-1)!}=2e.$$

For larger powers $x$, the sum will depend on the decomposition of $n^x$ as a sum of falling factorials $(n)_x$, which is given by the Stirling numbers of the second kind, https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind#Definition. Hence the sums are given by $e$ times the sum of the first Stirling numbers, which are the Bell numbers.

There does not seem to be an easy generalization to negative nor fractional powers. Asymptotic expressions for the Bell numbers are available.

$\endgroup$
0
$\begingroup$

The sum is the $x^{\text{th}}$ Bell number times $e$. The recursive sequence of Bell's number is given by $$B_{n+1}=\sum_{k=0}^{n} \binom{n}{k} B_k$$

$\endgroup$
5
  • $\begingroup$ For integer $x$... $\endgroup$
    – user65203
    Commented Jun 3, 2020 at 9:10
  • $\begingroup$ @YvesDaoust Edited! $\endgroup$ Commented Jun 3, 2020 at 9:12
  • $\begingroup$ $e \cdot B_0=e$ , but $\sum_{n=1}^{\infty}\frac{1}{n!}=e-1$ for $x \in \mathbb R_+$it looks like you are right, but how to prove this result? $\endgroup$ Commented Jun 3, 2020 at 9:15
  • $\begingroup$ @JakubPawlak I will edit tomorrow, because I have other things to do. $\endgroup$ Commented Jun 3, 2020 at 10:05
  • 1
    $\begingroup$ @Jakub That's Dobiniski's formula. $\endgroup$
    – Alapan Das
    Commented Jun 3, 2020 at 10:31
0
$\begingroup$

Proof of the Dobiniski's formula:

See, $$\sum_{n=0}^{\infty} \frac{n^k}{n!}=\underbrace{\frac{d}{dx}(x\frac{d}{dx}(x.....(\frac{d}{dx}e^x)))),}_\text{$k$ times}$$ at $x=1$.

$$=\underbrace{\frac{d}{dx}(x\frac{d}{dx}(......\frac{d}{dx}(x^2e^x+xe^x))),}_\text{$k-2$ times}$$ at $x=1$.....(1)

Also , $eB_k=\frac{d^k}{dt^k}(e^{e^t})$ at $t=0$

$=\frac{d^{k-2}}{dt^{k-2}}((e^t)^2e^{e^t}+e^te^{e^t})$ at $t=0$ ....(2)

See, (1) and (2) have exact the same structure. Also $e^t=1, e^{e^t}=e$ at $t=0$. And, at $x=1, e^x=e$.

Hence, we get $$eB_k=\sum_{n=0}^{\infty} \frac{n^k}{n!}$$.

$\endgroup$
0
$\begingroup$

We can rewrite the sum as $$ \eqalign{ & F(x) = \sum\limits_{1\, \le \,n} {{{n^{\,x} } \over {n!}}} = \sum\limits_{0\, \le \,n} {{{\left( {n + 1} \right)^{\,x} } \over {\left( {n + 1} \right)!}}} = \cr & = \sum\limits_{0\, \le \,n} {\sum\limits_{0\, \le \,j} {\left( \matrix{ x \cr j \cr} \right){{n^{\,j} } \over {\left( {n + 1} \right)!}}} } = \cr & = \sum\limits_{0\, \le \,n} {\sum\limits_{0\, \le \,j} {{{x^{\,\underline {\,j\,} } } \over {j!}}{{n^{\,j} } \over {\left( {n + 1} \right)!}}} } = \cr & = \sum\limits_{0\, \le \,j} {\left( {\sum\limits_{0\, \le \,n} {{{n^{\,j} } \over {\left( {n + 1} \right)!}}} } \right)} {{x^{\,\underline {\,j\,} } } \over {j!}} \cr} $$

which gives the expansion of $F(x)$ as a Newton series, the inner sum being "near-Bell" numbers

If we replace the falling Factorial with $$ x^{\,\underline {\,j\,} } = \sum\limits_{\left( {0\, \le } \right)\,k\,\left( { \le \,j} \right)} {\left( { - 1} \right)^{\,j - k} \left[ \matrix{ j \cr k \cr} \right]x^{\,k} } $$ we unfortunately get an alternating diverging series for the coefficients of $x^k$.

However the actual Bell numbers intevene into $$ \eqalign{ & F(x + 1) = \sum\limits_{0\, \le \,n} {{{\left( {n + 1} \right)^{\,x} } \over {n!}}} = \sum\limits_{0\, \le \,k} {\left( {\sum\limits_{0\, \le \,n} {{{n^{\,k} } \over {n!}}} } \right)\left( \matrix{ x \cr k \cr} \right)} = \cr & = e\sum\limits_{0\, \le \,k} {B_{\,k} \left( \matrix{ x \cr k \cr} \right)} = e\sum\limits_{0\, \le \,k} {{{B_{\,k} } \over {k!}}x^{\,\underline {\,k\,} } } \cr} $$ wherefrom we also get the interesting recurrence $$ \eqalign{ & F(x + 1) = \sum\limits_{0\, \le \,k} {\left( {\sum\limits_{0\, \le \,n} {{{n^{\,k} } \over {n!}}} } \right)\left( \matrix{ x \cr k \cr} \right)} = \cr & = \sum\limits_{0\, \le \,k} {\left( {\left[ {k = 0} \right] + \sum\limits_{1\, \le \,n} {{{n^{\,k} } \over {n!}}} } \right)\left( \matrix{ x \cr k \cr} \right)} = \cr & = \sum\limits_{0\, \le \,k} {\left( {\left[ {k = 0} \right] + F(k)} \right)\left( \matrix{ x \cr k \cr} \right)} = \cr & = 1 + \sum\limits_{0\, \le \,k} {\left( \matrix{ x \cr k \cr} \right)F(k)} \cr} $$

$\endgroup$

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .