2
$\begingroup$

I've tried at least a dozen ways to convert this DNF to CNF, yet I always end up with something unusable. Here is the DNF:

$$y= (A \wedge B \wedge \neg C \wedge D) \vee (A \wedge B \wedge C \wedge \neg D) \vee (\neg A \wedge C \wedge D) \vee (\neg A \wedge \neg C \wedge \neg D) \vee (\neg B \wedge C \wedge D) \vee (\neg B \wedge \neg C \wedge \neg D).$$

Could you please help me to at least get on the right track?

$\endgroup$
0

1 Answer 1

4
$\begingroup$

HINT

Are you familiar with FOIL, that says that $(A+B)(C+D) = AC+AD+BC+BD$?

Well, that principle generalizes more larger or more terms, simply by systematically taking all possible ways of taking 1 member from each term. For example:

$(A+B + E)(C+D) = AC+AD+BC+BD + EC + ED$

or

$(A+B + E)(C+D + F) = AC+AD+AF+BC+BD + BF+EC + ED+EF$

or

$(A+B)(C+D)(E+F) = ACE+ACF+ADE+ADF+BCE+BCF+BDE+BDF$

See how this works?

Well, using Distribution of conjunctions ovder disjunctions (or vice versa) you can do the exact same thing. For example:

$(A \lor B \lor E) \land (C \lor D) = (A \land C) \lor (A \land D) \lor (B \land C) \lor (B \land D) \lor (E \land C) \lor (E \land D)$

$(A \land B) \lor (C \land D) \lor (E \land F) = (A \lor C \lor E) \land (A \lor C \lor F) \land (A \lor D \lor E) \land (A \lor D \lor F) \land (B \lor C \lor E) \land (B \lor C \lor F) \land (B \lor D \lor E) \land (B \lor D \lor F)$

Etc.

Of course, in your case that means you get $4 \cdot 4 \cdot 3 \cdot 3 \cdot 3 \cdot 3 = 1296$ terms ....

... so, we probably want to be a bit smarter about this....

OK, let's first establish a basic equivalence that will be quite useful:

$(C \land D) \lor (\neg C \land \neg D) \overset{Distribution}{=}$

$(C \lor \neg C) \land (C \lor \neg D) \land (D \lor \neg C) \land (D \lor \neg D) \overset{Complement}{=}$

$\top \land (C \lor \neg D) \land (D \lor \neg C) \land \top \overset{Identity}{=}$

$(C \lor \neg D) \land (\neg C \lor D)$

So, we have:

$$(C \land D) \lor (\neg C \land \neg D) = (C \lor \neg D) \land (\neg C \lor D) \tag{1}$$

and, by duality of the $\land$ and the $\lor$, we therefore also have:

$$(C \lor D) \land (\neg C \lor \neg D) = (C \land \neg D) \lor (\neg C \land D) \tag{2}$$

OK, with that:

$(A \land B \land \neg C \land D) \lor (A \land B \land C \land \neg D) \lor (\neg A \land C \land D) \lor (\neg A \land \neg C \land \neg D) \lor (\neg B \land C \land D) \lor (\neg B \land \neg C \land \neg D) \overset{Commutation, Association}{=}$

$[(A \land B \land \neg C \land D) \lor (A \land B \land C \land \neg D)] \lor [(\neg A \land C \land D) \lor (\neg B \land C \land D)] \lor [(\neg A \land \neg C \land \neg D) \lor (\neg B \land \neg C \land \neg D)]\overset{Distribution}{=}$

$[(A \land B) \land ((\neg C \land D) \lor (C \land \neg D))] \lor [(\neg A \lor \neg B) \land (C \land D)] \lor [(\neg A \lor \neg B) \lor (\neg C \land \neg D)]\overset{DeMorgan}{=}$

$[(A \land B) \land ((\neg C \land D) \lor (C \land \neg D))] \lor [\neg (A \land B) \land (C \land D)] \lor [\neg (A \land B) \lor (\neg C \land \neg D)]\overset{Distribution}{=}$

$[(A \land B) \land ((\neg C \land D) \lor (C \land \neg D))] \lor [\neg (A \land B) \land ((C \land D) \lor (\neg C \land \neg D))]\overset{(1)}{=}$

$[(A \land B) \land ((\neg C \land D) \lor (C \land \neg D))] \lor [\neg (A \land B) \land ((C \lor \neg D) \land (\neg C \lor D))]\overset{Double \ Negation}{=}$

$[(A \land B) \land ((\neg C \land D) \lor (C \land \neg D))] \lor [\neg (A \land B) \land \neg \neg ((C \lor \neg D) \land (\neg C \lor D))]\overset{DeMorgan}{=}$

$[(A \land B) \land ((\neg C \land D) \lor (C \land \neg D))] \lor [\neg (A \land B) \land \neg ((\neg C \land D) \lor (C \land \neg D))]\overset{Distribution}{=}$

$=[(A \land B) \lor \neg (A \land B)] \land [(A \land B) \lor \neg ((\neg C \land D) \lor (C \land \neg D))] \land [\neg (A \land B) \lor ((\neg C \land D) \lor (C \land \neg D))] \land [((\neg C \land D) \lor (C \land \neg D)) \lor \neg ((\neg C \land D) \lor (C \land \neg D))]\overset{Complement}{=}$

$\top \land [(A \land B) \lor ((C \lor \neg D) \land (\neg C \lor D))] \land [\neg (A \land B) \lor ((\neg C \land D) \lor (C \land \neg D))] \land \top\overset{Identity}{=}$

$[(A \land B) \lor ((C \lor \neg D) \land (\neg C \lor D))] \land [\neg (A \land B) \lor ((\neg C \land D) \lor (C \land \neg D))] \overset{(2}{=}$

$[(A \land B) \lor ((C \lor \neg D) \land (\neg C \lor D))] \land [\neg (A \land B) \lor ((C \lor D) \land (\neg C \lor \neg D))]\overset{Distribution}{=}$

$[(A \land B) \lor (C \lor \neg D)] \land [(A \land B) \lor (\neg C \lor D)] \land [(\neg A \lor \neg B) \lor ((C \lor D) \land (\neg C \lor \neg D))]\overset{Distribution}{=}$

$(A \lor C \lor \neg D) \land (B \lor C \lor \neg D) \land (A \lor \neg C \lor D) \land (B \lor \neg C \lor D) \land (\neg A \lor \neg B \lor C \lor D) \land (\neg A \lor \neg B \lor \neg C \lor \neg D)$

$\endgroup$
1
  • 1
    $\begingroup$ okay i understand, i will try it. thank you $\endgroup$ Commented Oct 1, 2019 at 19:17

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .