SlideShare a Scribd company logo
Tracey	
  Tokuhama-­‐Espinosa,	
  Ph.D.	
   	
   Jan	
  2011	
  
Article	
  published	
  in	
  New	
  Horizons	
  in	
  Education	
  
John	
  Hopkins	
  School	
  of	
  Education	
  
http://education.jhu.edu/newhorizons	
  
NewHorizons_SOE@jhu.edu	
  
6740	
  Alexander	
  Bell	
  Drive	
  -­‐	
  Columbia,	
  MD	
  21231	
  	
  	
  	
  
410-­‐516-­‐9755	
  
	
  
	
  
WHAT	
  MIND,	
  BRAIN,	
  AND	
  EDUCATION	
  (MBE)	
  SCIENCE	
  CAN	
  DO	
  FOR	
  TEACHING	
  
	
  
Abstract	
  
If	
   the	
   combination	
   of	
   neuroscience,	
   psychology	
   and	
   education	
   (“Mind,	
   Brain,	
   and	
  
Education	
   science)	
   is	
   the	
   way	
   we	
   should	
   approach	
   teaching	
   from	
   now	
   on,	
   what	
  
exactly	
  are	
  the	
  lessons	
  we	
  can	
  apply	
  to	
  the	
  classroom?	
  This	
  article	
  looks	
  at	
  five	
  well-­‐
established	
  facts	
  whose	
  evidence	
  points	
  to	
  better	
  teaching	
  practices.	
  
The	
   following	
   is	
   an	
   excerpt	
   from	
   Mind,	
   Brain,	
   and	
   Education	
   Science:	
   A	
  
comprehensive	
   guide	
   to	
   the	
   new	
   brain-­based	
   teaching	
   (W.W.	
   Norton)	
   a	
   book	
  
based	
  on	
  over	
  4,500	
  studies	
  and	
  with	
  contributions	
  from	
  the	
  world’s	
  leaders	
  
in	
  MBE	
  Science.	
  
	
  
Evidence-­Based	
  Solutions	
  for	
  the	
  Classroom	
  
“What	
  a	
  thing	
  is	
  and	
  what	
  it	
  means	
  are	
  not	
  separate,	
  the	
  former	
  being	
  physical	
  and	
  
the	
  latter	
  mental	
  as	
  we	
  are	
  accustomed	
  to	
  believe.”	
  	
  
—James	
  J.	
  Gibson,	
  “More	
  on	
  Affordances”	
  (1982,	
  p.	
  408)	
  
How	
   do	
   we	
   learn	
   best?	
   What	
   is	
   individual	
   human	
   potential?	
   How	
   do	
   we	
  
ensure	
   that	
   children	
   live	
   up	
   to	
   their	
   promise	
   as	
   learners?	
   These	
   questions	
   and	
  
others	
  have	
  been	
  posed	
  by	
  philosophers	
  as	
  well	
  neuroscientists,	
  psychologists,	
  and	
  
educators	
  for	
  as	
  long	
  as	
  humans	
  have	
  pondered	
  their	
  own	
  existence.	
  Because	
  MBE	
  
science	
  moves	
  educators	
  closer	
  to	
  the	
  answers	
  than	
  at	
  any	
  other	
  time	
  in	
  history,	
  it	
  
benefits	
  teachers	
  in	
  their	
  efficacy	
  and	
  learners	
  in	
  their	
  ultimate	
  success.	
  
Great	
  teachers	
  have	
  always	
  “sensed”	
  why	
  their	
  methods	
  worked;	
  thanks	
  to	
  
brain	
  imaging	
  technology,	
  it	
  is	
  now	
  possible	
  to	
  substantiate	
  many	
  of	
  these	
  hunches	
  
with	
  empirical	
  scientific	
  research.	
  For	
  example,	
  good	
  teachers	
  may	
  suspect	
  that	
  if	
  
they	
  give	
  their	
  students	
  just	
  a	
  little	
  more	
  time	
  to	
  respond	
  to	
  questions	
  than	
  normal	
  
when	
  called	
  upon,	
  they	
  might	
  get	
  better-­‐quality	
  answers.	
  	
  Since	
  1972	
  there	
  has	
  been	
  
empirical	
   evidence	
   that	
   if	
   teachers	
   give	
   students	
   several	
   seconds	
   to	
   reply	
   to	
  
questions	
  posed	
  in	
  class,	
  rather	
  than	
  the	
  normal	
  single	
  second,	
  the	
  probability	
  of	
  a	
  
quality	
  reply	
  increases.1	
  Information	
  about	
  student	
  response	
  time	
  is	
  shared	
  in	
  some	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1
Studies that offer evidence to this effect include Chun & Turk-Browne (2007); Pashler, Johnsyon, &
Ruthruff (2001); Posner (2004); Sarter, Gehring, & Kozak (2006); Smallwood, Fishman, & Schooler,
(2007); Stahl (1990); Chiles (2006); Thomas (1972).
Tracey	
  Tokuhama-­‐Espinosa,	
  Ph.D.	
   	
   Jan	
  2011	
  
Article	
  published	
  in	
  New	
  Horizons	
  in	
  Education	
  
John	
  Hopkins	
  School	
  of	
  Education	
  
http://education.jhu.edu/newhorizons	
  
NewHorizons_SOE@jhu.edu	
  
6740	
  Alexander	
  Bell	
  Drive	
  -­‐	
  Columbia,	
  MD	
  21231	
  	
  	
  	
  
410-­‐516-­‐9755	
  
	
  
teacher	
   training	
   schools,	
   but	
   not	
   all.	
   Standards	
   in	
   MBE	
   science	
   ensure	
   that	
  
information	
  about	
  the	
  brain’s	
  attention	
  span	
  and	
  need	
  for	
  reflection	
  time	
  would	
  be	
  
included	
  in	
  teacher	
  training,	
  for	
  example.	
  	
  
The	
   basic	
   premise	
   behind	
   the	
   use	
   of	
   standards	
   in	
   MBE	
   science	
   is	
   that	
  
fundamental	
  skills,	
  such	
  as	
  reading	
  and	
  math,	
  are	
  extremely	
  complex	
  and	
  require	
  a	
  
variety	
   of	
   neural	
   pathways	
   and	
   mental	
   systems	
   to	
   work	
   correctly.	
   MBE	
   science	
  
helps	
  teachers	
  understand	
  why	
  there	
  are	
  so	
  many	
  ways	
  that	
  things	
  can	
  go	
  wrong,	
  
and	
  it	
  identifies	
  the	
  many	
  ways	
  to	
  maximize	
  the	
  potential	
  of	
  all	
  learners.	
  This	
  type	
  of	
  
knowledge	
   keeps	
   educators	
   from	
   flippantly	
   generalizing,	
   “He	
   has	
   a	
   problem	
   with	
  
math,”	
   and	
   rather	
   encourages	
   them	
   to	
   decipher	
   the	
   true	
   roots	
   (e.g.,	
   number	
  
recognition,	
  quantitative	
  processing,	
  formula	
  structures,	
  or	
  some	
  sub-­‐skill	
  in	
  math).	
  
MBE	
   science	
   standards	
   make	
   teaching	
   methods	
   and	
   diagnoses	
   more	
   precise.	
  
Through	
  MBE,	
  teachers	
  have	
  better	
  diagnostic	
  tools	
  to	
  help	
  them	
  more	
  accurately	
  
understand	
  their	
  students’	
  strengths	
  and	
  weakness.	
  These	
  standards	
  also	
  prevent	
  
teachers	
   from	
   latching	
   onto	
   unsubstantiated	
   claims	
   and	
   “neuromyths”	
   and	
   give	
  
them	
  better	
  tools	
  for	
  judging	
  the	
  quality	
  of	
  the	
  information.	
  Each	
  individual	
  has	
  a	
  
different	
   set	
   of	
   characteristics	
   and	
   is	
   unique,	
   though	
   human	
   patterns	
   for	
   the	
  
development	
   of	
   different	
   skills	
   sets,	
   such	
   as	
   walking	
   and	
   talking,	
   doing	
   math	
   or	
  
learning	
   to	
   read,	
   do	
   exist.	
   One	
   of	
   the	
   most	
   satisfying	
   elements	
   of	
   MBE	
   science	
   is	
  
having	
  the	
  tools	
  to	
  maximize	
  the	
  potential	
  of	
  each	
  individual	
  as	
  he	
  or	
  she	
  learns	
  new	
  
skills.	
  
	
  
Figure	
  2.1	
  Discipline	
  and	
  sub-­‐disciplines	
  in	
  Mind,	
  Brain,	
  and	
  Education	
  Science	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Tracey	
  Tokuhama-­‐Espinosa,	
  Ph.D.	
   	
   Jan	
  2011	
  
Article	
  published	
  in	
  New	
  Horizons	
  in	
  Education	
  
John	
  Hopkins	
  School	
  of	
  Education	
  
http://education.jhu.edu/newhorizons	
  
NewHorizons_SOE@jhu.edu	
  
6740	
  Alexander	
  Bell	
  Drive	
  -­‐	
  Columbia,	
  MD	
  21231	
  	
  	
  	
  
410-­‐516-­‐9755	
  
	
  
	
  
	
  
Source:	
  Bramwell	
  for	
  Tokuhama-­Espinosa	
  	
  
	
  
	
  
Education	
  is	
  now	
  seen	
  as	
  the	
  natural	
  outgrowth	
  of	
  the	
  human	
  thirst	
  to	
  know	
  
oneself	
  better	
  combined	
  with	
  new	
  technology	
  that	
  allows	
  the	
  confirmation	
  of	
  many	
  
hypotheses	
  about	
  good	
  teaching	
  practices.	
  Past	
  models	
  of	
  learning,	
  many	
  of	
  which	
  
came	
  from	
  psychology	
  and	
  neuroscience,	
  lay	
  the	
  path	
  for	
  current	
  research	
  problems	
  
being	
   addressed	
   today	
   to	
   devise	
   better	
   teaching	
   tools.	
   For	
   example,	
   early	
   in	
   the	
  
development	
   of	
   psychology,	
   Freud	
   theorized	
   that	
   part	
   of	
   successful	
   behavior	
  
management	
   techniques,	
   including	
   teaching,	
   was	
   the	
   result	
   of	
   actual	
   physical	
  
Tracey	
  Tokuhama-­‐Espinosa,	
  Ph.D.	
   	
   Jan	
  2011	
  
Article	
  published	
  in	
  New	
  Horizons	
  in	
  Education	
  
John	
  Hopkins	
  School	
  of	
  Education	
  
http://education.jhu.edu/newhorizons	
  
NewHorizons_SOE@jhu.edu	
  
6740	
  Alexander	
  Bell	
  Drive	
  -­‐	
  Columbia,	
  MD	
  21231	
  	
  	
  	
  
410-­‐516-­‐9755	
  
	
  
changes	
  in	
  the	
  brain,	
  not	
  just	
  intangible	
  changes	
  in	
  the	
  mind.2	
  This	
  theory	
  has	
  since	
  
been	
  proven	
  through	
  evidence	
  of	
  neural	
  plasticity	
  and	
  the	
  fact	
  that	
  the	
  brain	
  changes	
  
daily,	
   albeit	
   on	
   a	
   microscopic	
   level,	
   and	
   even	
   before	
   there	
   are	
   visible	
   changes	
   in	
  
behavior.	
  These	
  changes	
  vary	
  depending	
  on	
  the	
  stimulus,	
  past	
  experiences	
  of	
  the	
  
learners,	
   and	
   the	
   intensity	
   of	
   the	
   intervention.	
   What	
   were	
   once	
   hypotheses	
   in	
  
psychology	
  are	
  now	
  being	
  proven,	
  thanks	
  to	
  this	
  new	
  interdisciplinary	
  view	
  and	
  the	
  
invention	
  of	
  technology.	
  On	
  the	
  other	
  hand,	
  other	
  past	
  beliefs	
  about	
  the	
  brain	
  have	
  
been	
  debunked.	
  For	
  example,	
  it	
  was	
  once	
  fashionable	
  to	
  think	
  of	
  a	
  right	
  and	
  a	
  left	
  
brain	
  that	
  competed	
  for	
  students’	
  attention	
  and	
  use.	
  It	
  has	
  now	
  been	
  proven	
  beyond	
  
a	
  doubt	
  that	
  the	
  brain	
  works	
  as	
  a	
  complex	
  design	
  of	
  integrated	
  systems,	
  not	
  through	
  
specialized	
  and	
  competing	
  right-­‐	
  and	
  left-­‐brained	
  functions.	
  These	
  examples	
  show	
  
how	
   past	
   beliefs	
   are	
   now	
   partnered	
   with	
   evidence	
   about	
   the	
   functioning	
   human	
  
brain	
  to	
  produce	
  this	
  powerful,	
  new	
  teaching–learning	
  model.	
  
	
  
The	
  Five	
  Well-­Established	
  Concepts	
  of	
  MBE	
  Science	
  
The	
   following	
   summary	
   of	
   the	
   well-­‐established	
   concepts	
   in	
   MBE	
   science	
  
comes	
  from	
  MBE	
  Science:	
  The	
  New	
  Brain-­Based	
  Education,3	
  which	
  I	
  wrote:	
  	
  
1.	
  Human	
  brains	
  are	
  as	
  unique	
  as	
  faces.4	
  Although	
  the	
  basic	
  structure	
  is	
  the	
  
same,	
  no	
  two	
  are	
  identical.	
  While	
  there	
  are	
  general	
  patterns	
  of	
  organization	
  in	
  how	
  
different	
  people	
  learn	
  and	
  which	
  brain	
  areas	
  are	
  involved,	
  each	
  brain	
  is	
  unique	
  and	
  
uniquely	
   organized.	
   The	
   uniqueness	
   of	
   the	
   human	
   brain	
   is	
   perhaps	
   the	
   most	
  
fundamental	
   belief	
   in	
   MBE	
   science.	
   Even	
   identical	
   twins	
   leave	
   the	
   womb	
   with	
  
physically	
  distinct	
  brains	
  due	
  to	
  the	
  slightly	
  different	
  experiences	
  they	
  had;	
  one	
  with	
  
his	
  ear	
  pressed	
  closer	
  to	
  the	
  uterus	
  wall	
  and	
  bombarded	
  with	
  sounds	
  and	
  light,	
  and	
  
the	
   other	
   smuggled	
   down	
   deep	
   in	
   the	
   dark.	
   There	
   are	
   clear	
   patterns	
   of	
   brain	
  
development	
  shared	
  by	
  all	
  people,	
  but	
  the	
  uniqueness	
  of	
  each	
  brain	
  explains	
  why	
  
students	
   learn	
   in	
   slightly	
   different	
   ways.	
   Many	
   popular	
   books	
   try	
   to	
   exploit	
   this	
  
finding	
  by	
  using	
  it	
  as	
  an	
  “excuse”	
  for	
  the	
  inability	
  of	
  teachers	
  to	
  reach	
  all	
  learners.	
  
This	
   is	
   simply	
   irresponsible.	
   The	
   uniqueness	
   of	
   each	
   brain	
   is	
   not	
   to	
   be	
  
overshadowed	
   by	
   the	
   fact	
   that	
   humans	
   as	
   a	
   species	
   share	
   clear	
   developmental	
  
stages	
  that	
  set	
  parameters	
  for	
  learning.	
  
2.	
   All	
   brains	
   are	
   not	
   equal	
   because	
   context	
   and	
   ability	
   influence	
   learning.5	
  
Context	
  includes	
  the	
  learning	
  environment,	
  motivation	
  for	
  the	
  topic	
  of	
  new	
  learning,	
  
and	
  prior	
  knowledge.	
  Different	
  people	
  are	
  born	
  with	
  different	
  abilities,	
  which	
  they	
  
can	
  improve	
  upon	
  or	
  lose,	
  depending	
  on	
  the	
  stimuli	
  or	
  lack	
  thereof.	
  How	
  learners	
  
receive	
  stimuli	
  is	
  impacted	
  by	
  what	
  they	
  bring	
  to	
  the	
  learning	
  context,	
  including	
  past	
  
experience	
   and	
   prior	
   knowledge.	
   This	
   means	
   that	
   children	
   do	
   not	
   enter	
   the	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2
Doidge (2007).
3
Tokuhama-Espinosa (2010).
4
Tokuhama-Espinosa (2008, p. 356).
5
Tokuhama-Espinosa (2008, p. 356).
Tracey	
  Tokuhama-­‐Espinosa,	
  Ph.D.	
   	
   Jan	
  2011	
  
Article	
  published	
  in	
  New	
  Horizons	
  in	
  Education	
  
John	
  Hopkins	
  School	
  of	
  Education	
  
http://education.jhu.edu/newhorizons	
  
NewHorizons_SOE@jhu.edu	
  
6740	
  Alexander	
  Bell	
  Drive	
  -­‐	
  Columbia,	
  MD	
  21231	
  	
  	
  	
  
410-­‐516-­‐9755	
  
	
  
classroom	
  on	
  an	
  even	
  playing	
  field.	
  Some	
  are	
  simply	
  more	
  prepared	
  for	
  the	
  world	
  
from	
  birth.	
  This	
  is	
  a	
  harsh	
  reality	
  to	
  face	
  because	
  it	
  explicitly	
  establishes	
  a	
  definitive	
  
framework	
  for	
  potential.	
  The	
  key,	
  however,	
  is	
  to	
  maximize	
  this	
  potential.	
  There	
  are	
  
thousands	
  of	
  people	
  who	
  are	
  born	
  with	
  the	
  potential	
  or	
  circumstances	
  to	
  be	
  quite	
  
smart	
  who	
  do	
  not	
  live	
  up	
  to	
  this	
  possibility,	
  while	
  there	
  are	
  thousands	
  who	
  are	
  born	
  
with	
  modest	
  potential,	
  but	
  who	
  maximize	
  this	
  “limitation”	
  well	
  beyond	
  expectations.	
  
Genes,	
   previous	
   experiences,	
   and	
   what	
   the	
   child	
   does	
   with	
   his	
   or	
   her	
   potential	
  
contribute	
  to	
  the	
  child’s	
  success	
  as	
  a	
  learner.	
  	
  
3.	
  The	
  brain	
  is	
  changed	
  by	
  experience.6	
  The	
  brain	
  is	
  a	
  complex,	
  dynamic,	
  and	
  
integrated	
   system	
   that	
   is	
   constantly	
   changed	
   by	
   experience,	
   though	
   most	
   of	
   this	
  
change	
   is	
   evident	
   only	
   at	
   a	
   microscopic	
   level.	
   You	
   will	
   go	
   to	
   bed	
   tonight	
   with	
   a	
  
different	
  brain	
  from	
  the	
  one	
  you	
  had	
  when	
  you	
  awoke.	
  Each	
  smell,	
  sight,	
  taste,	
  and	
  
touch	
  you	
  experience	
  and	
  each	
  feeling	
  or	
  thought	
  you	
  have	
  alters	
  the	
  physical	
  form	
  
of	
  your	
  brain.	
  Although	
  these	
  brain	
  changes	
  are	
  often	
  imperceptible	
  unless	
  viewed	
  
under	
  a	
  powerful	
  microscope,	
  they	
  constantly	
  change	
  the	
  physical	
  makeup	
  of	
  the	
  
brain.	
  With	
  rehearsal,	
  these	
  changes	
  become	
  permanent—which	
  can	
  work	
  in	
  both	
  
positive	
   and	
   negative	
   ways.	
   Areas	
   of	
   the	
   brain	
   that	
   are	
   used	
   together	
   tend	
   to	
   be	
  
strengthened,	
  whereas	
  areas	
  that	
  are	
  not	
  stimulated	
  atrophy.	
  This	
  truth	
  gives	
  rise	
  to	
  
the	
  Hebbian	
  synapse	
  concept	
  (1949):	
  Neurons	
  that	
  fire	
  together,	
  wire	
  together.	
  The	
  
“wire	
  together”	
  part	
  is	
  a	
  physical	
  manifestation	
  of	
  how	
  life	
  experiences	
  change	
  the	
  
brain.	
   In	
   short,	
   it	
   is	
   nearly	
   impossible	
   for	
   the	
   brain	
   not	
   to	
   learn	
   as	
   experience—
broadly	
   defined	
   as	
   “knowledge	
   or	
   practical	
   wisdom	
   gained	
   from	
   what	
   one	
   has	
  
observed,	
  encountered,	
  or	
  undergone”7	
  —changes	
  the	
  brain	
  on	
  a	
  daily	
  basis.	
  
4.	
  The	
  brain	
  is	
  highly	
  plastic.8	
  Human	
  brains	
  have	
  a	
  high	
  degree	
  of	
  plasticity	
  
and	
  develop	
  throughout	
  the	
  lifespan,	
  though	
  there	
  are	
  major	
  limits	
  on	
  this	
  plasticity,	
  
and	
  these	
  limits	
  increase	
  with	
  age.	
  People	
  can,	
  and	
  do,	
  learn	
  throughout	
  their	
  lives.	
  
One	
   of	
   the	
   most	
   influential	
   findings	
   of	
   the	
   20th	
   century	
   was	
   the	
   discovery	
   of	
   the	
  
brain’s	
  plasticity.	
  This	
  discovery	
  challenges	
  the	
  earlier	
  belief	
  in	
  localization	
  (i.e.,	
  that	
  
each	
  brain	
  area	
  had	
  a	
  highly	
  specific	
  function	
  that	
  only	
  that	
  area	
  could	
  fulfill),	
  which	
  
lasted	
  for	
  hundreds	
  of	
  years.	
  It	
  has	
  now	
  been	
  documented	
  that	
  neuroplasticity	
  can	
  
explain	
   why	
   some	
   people	
   are	
   able	
   to	
   recuperate	
   skills	
   thought	
   to	
   be	
   lost	
   due	
   to	
  
injury.	
   People	
   born	
   with	
   only	
   one	
   hemisphere	
   of	
   the	
   brain,	
   who	
   nevertheless	
  
manage	
   to	
   live	
   their	
   lives	
   normally,	
   are	
   an	
   extreme	
   example	
   of	
   this	
   plasticity.	
  
Antonio	
   Battro	
   and	
   Mary	
   Helen	
   Immordino-­‐Yang,	
   offer	
   documentation	
   of	
   people	
  
with	
  half	
  a	
  brain.	
  Antonio	
  Battro’s	
  work	
  on	
  Half	
  a	
  Brain	
  Is	
  Enough:	
  The	
  Story	
  of	
  Nico	
  
(2000)	
  is	
  a	
  remarkable	
  documentation	
  of	
  one	
  child’s	
  life	
  with	
  just	
  a	
  half	
  a	
  brain	
  and	
  
defies	
  previous	
  concepts	
  about	
  skill	
  set	
  location	
  in	
  the	
  brain.	
  Taking	
  Battro’s	
  lead,	
  
Immordino-­‐Yang	
  offers	
  the	
  detailed	
  story	
  of	
  two	
  cases	
  in	
  her	
  recent	
  work,	
  “A	
  Tale	
  of	
  
Two	
  Cases:	
  Lessons	
  for	
  Education	
  from	
  the	
  Study	
  of	
  Two	
  Boys	
  Living	
  with	
  Half	
  Their	
  
Brains”	
  (2007).	
  She	
  shows	
  how	
  the	
  entire	
  brain	
  works	
  as	
  a	
  single	
  large	
  system,	
  and	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
6
Tokuhama-Espinosa (2008, p. 356).
7
Dictionary.com (2010). Definition of learning.
8
Tokuhama-Espinosa (2008, p. 357).
Tracey	
  Tokuhama-­‐Espinosa,	
  Ph.D.	
   	
   Jan	
  2011	
  
Article	
  published	
  in	
  New	
  Horizons	
  in	
  Education	
  
John	
  Hopkins	
  School	
  of	
  Education	
  
http://education.jhu.edu/newhorizons	
  
NewHorizons_SOE@jhu.edu	
  
6740	
  Alexander	
  Bell	
  Drive	
  -­‐	
  Columbia,	
  MD	
  21231	
  	
  	
  	
  
410-­‐516-­‐9755	
  
	
  
when	
  parts	
  are	
  missing,	
  as	
  in	
  the	
  case	
  of	
  these	
  two	
  children	
  who	
  were	
  born	
  with	
  
only	
   half	
   a	
   brain	
   each,	
   then	
   other	
   parts	
   of	
   the	
   brain	
   can	
   “take	
   over”	
   and	
   learn	
  
functions	
  with	
  which	
  they	
  are	
  not	
  normally	
  associated.	
  
Researchers	
   such	
   as	
   Paul	
   Bach-­‐y-­‐Rita	
   make	
   it	
   clear	
   that	
   “we	
   see	
   with	
   our	
  
brains,	
  not	
  with	
  our	
  eyes”	
  (as	
  cited	
  in	
  Doidge,	
  2007,	
  p.	
  14).	
  That	
  is,	
  the	
  brain	
  as	
  a	
  
whole	
   is	
   responsible	
   for	
   sensory	
   perception,	
   not	
   necessarily	
   a	
   single	
   part	
   of	
   the	
  
brain.	
  Bach-­‐y-­‐Rita	
  explains	
  this	
  point	
  using	
  a	
  simple	
  metaphor:	
  Let’s	
  assume	
  that	
  
you	
  are	
  driving	
  from	
  point	
  A	
  to	
  point	
  B.	
  You	
  normally	
  take	
  the	
  most	
  efficient	
  route,	
  
but	
   if	
   a	
   bridge	
   is	
   down	
   or	
   the	
   road	
   is	
   blocked,	
   you	
   take	
   a	
   secondary	
   road.	
   This	
  
secondary	
  road	
  might	
  not	
  be	
  as	
  fast	
  as	
  the	
  “natural”	
  route,	
  but	
  it	
  gets	
  you	
  to	
  point	
  B	
  
all	
   the	
   same,	
   and	
   it	
   may	
   even	
   become	
   the	
   preferred	
   route	
   if	
   it	
   is	
   sufficiently	
  
reinforced.	
  	
  
Perhaps	
  the	
  author	
  who	
  has	
  done	
  the	
  most	
  to	
  explain	
  neuroplasticity	
  to	
  the	
  
public	
  is	
  physician	
  Norman	
  Doidge,	
  who	
  has	
  documented	
  studies	
  that	
  “showed	
  that	
  
children	
  are	
  not	
  always	
  stuck	
  with	
  the	
  mental	
  abilities	
  they	
  are	
  born	
  with;	
  that	
  the	
  
damaged	
  brain	
  can	
  often	
  reorganize	
  itself	
  so	
  that	
  when	
  one	
  part	
  fails,	
  another	
  can	
  
often	
   substitute;	
   that	
   is	
   brain	
   cells	
   die,	
   they	
   can	
   at	
   times	
   be	
   replaced;	
   that	
   many	
  
‘circuits’	
   and	
   even	
   basic	
   reflexes	
   that	
   we	
   think	
   are	
   hardwired	
   are	
   not.”9.	
  
Neuroplasticity	
   has	
   implications	
   for	
   brains	
   that	
   have	
   been	
   damaged,	
   but	
   also	
   for	
  
basic	
   learning	
   in	
   classroom	
   experiences	
   and	
   how	
   we	
   think	
   about	
   education.	
  
Whereas	
  it	
  was	
  popular	
  in	
  the	
  1990s	
  to	
  think	
  of	
  the	
  “crucial”	
  early	
  years,	
  it	
  is	
  now	
  
acknowledged	
   that	
   learning	
   takes	
   place	
   throughout	
   the	
   lifespan.	
   Does	
   this	
   point	
  
speak	
  against	
  the	
  privileging	
  of	
  early	
  childhood	
  educational	
  practices?	
  Not	
  at	
  all;	
  it	
  
simply	
   means	
   that	
   under	
   the	
   right	
   conditions,	
   the	
   skills	
   that	
   identify	
   normal	
  
developmental	
   stages	
   should	
   be	
   seen	
   as	
   benchmarks,	
   not	
   roadblocks,	
   because	
  
humans	
  can	
  learn	
  throughout	
  the	
  lifespan.	
  
5.	
  The	
  brain	
  connects	
  new	
  information	
  to	
  old.10	
  Connecting	
  new	
  information	
  
to	
  prior	
  knowledge	
  facilitates	
  learning.	
  We	
  learn	
  better	
  and	
  faster	
  when	
  we	
  relate	
  
new	
  information	
  to	
  things	
  that	
  we	
  already	
  know.	
  This	
  principle	
  may	
  sound	
  like	
  it	
  
needs	
  no	
  evidence—we	
  experience	
  it	
  every	
  day.	
  For	
  example,	
  let’s	
  say	
  you	
  are	
  going	
  
somewhere	
  you	
  have	
  never	
  been	
  before.	
  When	
  someone	
  gives	
  you	
  directions,	
  it	
  is	
  
very	
  helpful	
  if	
  they	
  offer	
  you	
  a	
  point	
  of	
  reference	
  that	
  is	
  familiar	
  to	
  you	
  (“You’ll	
  see	
  
the	
  post	
  office;	
  from	
  there,	
  turn	
  right	
  at	
  the	
  next	
  corner”).	
  Similarly,	
  when	
  a	
  child	
  
learns,	
  he	
  or	
  she	
  builds	
  off	
  of	
  a	
  past	
  knowledge;	
  there	
  is	
  no	
  new	
  learning	
  without	
  
reference	
  to	
  the	
  past.	
  	
  
It	
   is	
   unfortunate	
   that	
   new	
   concepts	
   are	
   sometimes	
   taught	
   in	
   schools	
   in	
   a	
  
conceptual	
   vacuum	
   without	
   anchoring	
   the	
   information	
   to	
   what	
   students	
   already	
  
know.	
   This	
   vacuum	
   is	
   the	
   reason	
   that	
   students	
   who	
   have	
   a	
   poor	
   foundation	
   in	
   a	
  
particular	
  subject	
  will	
  continue	
  to	
  fail.	
  How	
  can	
  a	
  child	
  who	
  does	
  not	
  understand	
  
addition	
  move	
  on	
  to	
  understand	
  subtraction?	
  To	
  use	
  a	
  house-­‐building	
  metaphor,	
  if	
  
we	
  have	
  a	
  weak	
  foundation,	
  then	
  it	
  is	
  irrelevant	
  how	
  sturdy	
  the	
  walls	
  are,	
  or	
  how	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
9
Doidge (2007, p. xv).
10
Tokuhama-Espinosa (2008a, p. 357).
Tracey	
  Tokuhama-­‐Espinosa,	
  Ph.D.	
   	
   Jan	
  2011	
  
Article	
  published	
  in	
  New	
  Horizons	
  in	
  Education	
  
John	
  Hopkins	
  School	
  of	
  Education	
  
http://education.jhu.edu/newhorizons	
  
NewHorizons_SOE@jhu.edu	
  
6740	
  Alexander	
  Bell	
  Drive	
  -­‐	
  Columbia,	
  MD	
  21231	
  	
  	
  	
  
410-­‐516-­‐9755	
  
	
  
well	
  built	
  the	
  roof	
  is;	
  the	
  structure	
  cannot	
  be	
  supported.	
  This	
  is	
  an	
  argument	
  for	
  
quality	
   instruction	
   in	
   the	
   early	
   years.	
   Without	
   a	
   firm	
   foundation	
   in	
   basic	
  
mathematical	
   conceptualization	
   (or	
   basic	
   concepts	
   in	
   language,	
   values,	
   artistic	
   or	
  
social	
  content,	
  for	
  that	
  matter),	
  then	
  a	
  student	
  will	
  have	
  a	
  lot	
  of	
  trouble	
  moving	
  on	
  to	
  
build	
  more	
  complex	
  conceptual	
  understandings.	
  	
  
	
  
The	
  well-­‐established	
  concepts	
  in	
  MBE	
  science	
  are	
  not	
  new	
  ideas.	
  All	
  five	
  have	
  
been	
  around	
  for	
  decades,	
  if	
  not	
  centuries.	
  What	
  is	
  new	
  is	
  that	
  all	
  five	
  concepts	
  have	
  
been	
  proven	
  without	
  a	
  doubt	
  in	
  neuroscience,	
  psychology,	
  and	
  educational	
  settings,	
  
adding	
   to	
   their	
   credibility	
   for	
   use	
   in	
   planning,	
   curriculum	
   design,	
   classroom	
  
methodology	
  design,	
  and	
  basic	
  pedagogy.	
  What	
  is	
  new	
  is	
  their	
  consistent	
  application	
  
in	
   best-­‐practice	
   classroom	
   settings.	
   These	
   five	
   “truths”	
   should	
   guide	
   all	
   teaching	
  
practices	
  as	
  well	
  as	
  future	
  research	
  on	
  better	
  teaching	
  tools.11	
  
	
  
References	
  
Chiles,	
  O.	
  (2006).	
  Test	
  taking	
  time	
  and	
  quality	
  of	
  high	
  school	
  education.	
  Master’s	
  
thesis,	
  University	
  of	
  South	
  Alabama,	
  Mobile,	
  AL.	
  AAT	
  1433221.	
  
Chun,	
  M.,	
  &	
  Turk-­‐Browne,	
  N.B.	
  (2007).	
  Interactions	
  between	
  attention	
  and	
  memory.	
  
Current	
  Opinion	
  in	
  Neurobiology,	
  17(2),	
  177–184.	
  
Doidge,	
  N.	
  (2007).	
  The	
  brain	
  that	
  changes	
  itself.	
  New	
  York:	
  Penguin.	
  	
  
Gibson,	
  J.	
  J.	
  (1982).	
  More	
  on	
  Affordances.	
  Online	
  memo	
  taken	
  from	
  E.S.	
  Reed	
  &	
  R.	
  
Jones	
  (Eds.),	
  Reasons	
  for	
  realism	
  (pp.	
  406–408).	
  Hillsdale,	
  NJ:	
  Erlbaum.	
  
Available	
  online	
  at	
  
http://www.computerusability.com/Gibson/files/moreaff.html	
  
Pashler,	
  H.,	
  McDaniel,	
  M.,	
  Rohrer,	
  D.,	
  &	
  Bjork,	
  R.	
  (2008).	
  Learning	
  styles:	
  Concepts	
  
and	
  evidence.	
  Psychological	
  Science	
  in	
  the	
  Public	
  Interest,	
  9(3),	
  103–199.	
  
Posner,	
  M.	
  (2004b).	
  Is	
  the	
  combination	
  of	
  psychology	
  and	
  neuroscience	
  important	
  to	
  
you?	
  	
  Impuls:	
  Tidsskrift	
  for	
  Psyckhologi,	
  3,	
  6–8.	
  
Posner,	
  M.	
  (2004c).	
  Neural	
  systems	
  and	
  individual	
  differences.	
  Teachers	
  College	
  
Record,	
  106(1),	
  24–30.	
  
Posner,	
  M.	
  (Ed.).	
  (2004a).	
  Cognitive	
  neuroscience	
  of	
  attention.	
  New	
  York:	
  Guilford	
  
Press.	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
11
For a thorough review of each OECD category, readers are invited to read Mind, Brain, and Education
Science: The New Brain-Based Learning (Tokuhama-Espinosa, 2010a).
Tracey	
  Tokuhama-­‐Espinosa,	
  Ph.D.	
   	
   Jan	
  2011	
  
Article	
  published	
  in	
  New	
  Horizons	
  in	
  Education	
  
John	
  Hopkins	
  School	
  of	
  Education	
  
http://education.jhu.edu/newhorizons	
  
NewHorizons_SOE@jhu.edu	
  
6740	
  Alexander	
  Bell	
  Drive	
  -­‐	
  Columbia,	
  MD	
  21231	
  	
  	
  	
  
410-­‐516-­‐9755	
  
	
  
Sarter,	
  M.,	
  Gehring,	
  W.J.,	
  &	
  Kozak,	
  R.	
  (2006).	
  More	
  attention	
  must	
  be	
  paid:	
  The	
  
neurobiology	
  of	
  attentional	
  effort.	
  Brain	
  Research	
  Reviews,	
  51(2),	
  145–160.	
  
Smallwood,	
  J.,	
  Fishman,	
  D.J.,	
  &	
  Schooler,	
  J.W.	
  (2007).	
  Counting	
  the	
  cost	
  of	
  an	
  absent	
  
mind:	
  Mind	
  wandering	
  as	
  an	
  under	
  recognized	
  influence	
  on	
  educational	
  
performance.	
  Psychonomic	
  Bulletin	
  and	
  Review,	
  14(2),	
  230.	
  
Stahl,	
  R.	
  (1990).	
  Using	
  “think-­time”	
  behaviors	
  to	
  promote	
  students'	
  information	
  
processing,	
  learning,	
  and	
  on-­task	
  participation:	
  An	
  instructional	
  module.	
  
Tempe,	
  AZ:	
  Arizona	
  State	
  University.	
  
Thomas,	
  J.	
  (1972).	
  The	
  variation	
  of	
  memory	
  with	
  time	
  for	
  information	
  appearing	
  
during	
  a	
  lecture.	
  Studies	
  in	
  Adult	
  Education,	
  4,	
  57–62.	
  
Tokuhama-­‐Espinosa,	
  T.	
  (2010).	
  The	
  new	
  science	
  of	
  teaching	
  and	
  learning:	
  Using	
  the	
  
best	
  of	
  mind,	
  brain,	
  and	
  education	
  science	
  in	
  the	
  classroom.	
  New	
  York:	
  
Columbia	
  University	
  Teachers	
  College	
  Press.	
  	
  
Tokuhama-­‐Espinosa,	
  T.	
  (2008b).	
  Summary	
  of	
  the	
  international	
  Delphi	
  expert	
  survey	
  
on	
  the	
  emerging	
  field	
  of	
  neuroeducation	
  (Mind,	
  rain,	
  and	
  
Education/educational	
  neuroscience).	
  Unpublished	
  manuscript.	
  
Books	
  on	
  this	
  topic	
  by	
  Tracey	
  Tokuhama-­Espinosa:	
  
Tokuhama-­‐Espinosa,	
  T.	
  (2010).	
  The	
  new	
  science	
  of	
  teaching	
  and	
  learning:	
  Using	
  the	
  
best	
  of	
  mind,	
  brain,	
  and	
  education	
  science	
  in	
  the	
  classroom.	
  New	
  York:	
  
Columbia	
  University	
  Teachers	
  College	
  Press.	
  	
  
Tokuhama-­‐Espinosa,	
  T.	
  (2010).	
  Mind,	
  Brain,	
  and	
  Education	
  Science:	
  The	
  new	
  brain-­
based	
  learning.	
  New	
  York,	
  NY:	
  W.W:	
  Norton.	
  
	
  

More Related Content

What Mind, Brain and Education can do for Teaching. By Tracey Tokuhama-Espinosa. January 2011

  • 1. Tracey  Tokuhama-­‐Espinosa,  Ph.D.     Jan  2011   Article  published  in  New  Horizons  in  Education   John  Hopkins  School  of  Education   http://education.jhu.edu/newhorizons   NewHorizons_SOE@jhu.edu   6740  Alexander  Bell  Drive  -­‐  Columbia,  MD  21231         410-­‐516-­‐9755       WHAT  MIND,  BRAIN,  AND  EDUCATION  (MBE)  SCIENCE  CAN  DO  FOR  TEACHING     Abstract   If   the   combination   of   neuroscience,   psychology   and   education   (“Mind,   Brain,   and   Education   science)   is   the   way   we   should   approach   teaching   from   now   on,   what   exactly  are  the  lessons  we  can  apply  to  the  classroom?  This  article  looks  at  five  well-­‐ established  facts  whose  evidence  points  to  better  teaching  practices.   The   following   is   an   excerpt   from   Mind,   Brain,   and   Education   Science:   A   comprehensive   guide   to   the   new   brain-­based   teaching   (W.W.   Norton)   a   book   based  on  over  4,500  studies  and  with  contributions  from  the  world’s  leaders   in  MBE  Science.     Evidence-­Based  Solutions  for  the  Classroom   “What  a  thing  is  and  what  it  means  are  not  separate,  the  former  being  physical  and   the  latter  mental  as  we  are  accustomed  to  believe.”     —James  J.  Gibson,  “More  on  Affordances”  (1982,  p.  408)   How   do   we   learn   best?   What   is   individual   human   potential?   How   do   we   ensure   that   children   live   up   to   their   promise   as   learners?   These   questions   and   others  have  been  posed  by  philosophers  as  well  neuroscientists,  psychologists,  and   educators  for  as  long  as  humans  have  pondered  their  own  existence.  Because  MBE   science  moves  educators  closer  to  the  answers  than  at  any  other  time  in  history,  it   benefits  teachers  in  their  efficacy  and  learners  in  their  ultimate  success.   Great  teachers  have  always  “sensed”  why  their  methods  worked;  thanks  to   brain  imaging  technology,  it  is  now  possible  to  substantiate  many  of  these  hunches   with  empirical  scientific  research.  For  example,  good  teachers  may  suspect  that  if   they  give  their  students  just  a  little  more  time  to  respond  to  questions  than  normal   when  called  upon,  they  might  get  better-­‐quality  answers.    Since  1972  there  has  been   empirical   evidence   that   if   teachers   give   students   several   seconds   to   reply   to   questions  posed  in  class,  rather  than  the  normal  single  second,  the  probability  of  a   quality  reply  increases.1  Information  about  student  response  time  is  shared  in  some                                                                                                                   1 Studies that offer evidence to this effect include Chun & Turk-Browne (2007); Pashler, Johnsyon, & Ruthruff (2001); Posner (2004); Sarter, Gehring, & Kozak (2006); Smallwood, Fishman, & Schooler, (2007); Stahl (1990); Chiles (2006); Thomas (1972).
  • 2. Tracey  Tokuhama-­‐Espinosa,  Ph.D.     Jan  2011   Article  published  in  New  Horizons  in  Education   John  Hopkins  School  of  Education   http://education.jhu.edu/newhorizons   NewHorizons_SOE@jhu.edu   6740  Alexander  Bell  Drive  -­‐  Columbia,  MD  21231         410-­‐516-­‐9755     teacher   training   schools,   but   not   all.   Standards   in   MBE   science   ensure   that   information  about  the  brain’s  attention  span  and  need  for  reflection  time  would  be   included  in  teacher  training,  for  example.     The   basic   premise   behind   the   use   of   standards   in   MBE   science   is   that   fundamental  skills,  such  as  reading  and  math,  are  extremely  complex  and  require  a   variety   of   neural   pathways   and   mental   systems   to   work   correctly.   MBE   science   helps  teachers  understand  why  there  are  so  many  ways  that  things  can  go  wrong,   and  it  identifies  the  many  ways  to  maximize  the  potential  of  all  learners.  This  type  of   knowledge   keeps   educators   from   flippantly   generalizing,   “He   has   a   problem   with   math,”   and   rather   encourages   them   to   decipher   the   true   roots   (e.g.,   number   recognition,  quantitative  processing,  formula  structures,  or  some  sub-­‐skill  in  math).   MBE   science   standards   make   teaching   methods   and   diagnoses   more   precise.   Through  MBE,  teachers  have  better  diagnostic  tools  to  help  them  more  accurately   understand  their  students’  strengths  and  weakness.  These  standards  also  prevent   teachers   from   latching   onto   unsubstantiated   claims   and   “neuromyths”   and   give   them  better  tools  for  judging  the  quality  of  the  information.  Each  individual  has  a   different   set   of   characteristics   and   is   unique,   though   human   patterns   for   the   development   of   different   skills   sets,   such   as   walking   and   talking,   doing   math   or   learning   to   read,   do   exist.   One   of   the   most   satisfying   elements   of   MBE   science   is   having  the  tools  to  maximize  the  potential  of  each  individual  as  he  or  she  learns  new   skills.     Figure  2.1  Discipline  and  sub-­‐disciplines  in  Mind,  Brain,  and  Education  Science                                                                                                                    
  • 3. Tracey  Tokuhama-­‐Espinosa,  Ph.D.     Jan  2011   Article  published  in  New  Horizons  in  Education   John  Hopkins  School  of  Education   http://education.jhu.edu/newhorizons   NewHorizons_SOE@jhu.edu   6740  Alexander  Bell  Drive  -­‐  Columbia,  MD  21231         410-­‐516-­‐9755         Source:  Bramwell  for  Tokuhama-­Espinosa         Education  is  now  seen  as  the  natural  outgrowth  of  the  human  thirst  to  know   oneself  better  combined  with  new  technology  that  allows  the  confirmation  of  many   hypotheses  about  good  teaching  practices.  Past  models  of  learning,  many  of  which   came  from  psychology  and  neuroscience,  lay  the  path  for  current  research  problems   being   addressed   today   to   devise   better   teaching   tools.   For   example,   early   in   the   development   of   psychology,   Freud   theorized   that   part   of   successful   behavior   management   techniques,   including   teaching,   was   the   result   of   actual   physical  
  • 4. Tracey  Tokuhama-­‐Espinosa,  Ph.D.     Jan  2011   Article  published  in  New  Horizons  in  Education   John  Hopkins  School  of  Education   http://education.jhu.edu/newhorizons   NewHorizons_SOE@jhu.edu   6740  Alexander  Bell  Drive  -­‐  Columbia,  MD  21231         410-­‐516-­‐9755     changes  in  the  brain,  not  just  intangible  changes  in  the  mind.2  This  theory  has  since   been  proven  through  evidence  of  neural  plasticity  and  the  fact  that  the  brain  changes   daily,   albeit   on   a   microscopic   level,   and   even   before   there   are   visible   changes   in   behavior.  These  changes  vary  depending  on  the  stimulus,  past  experiences  of  the   learners,   and   the   intensity   of   the   intervention.   What   were   once   hypotheses   in   psychology  are  now  being  proven,  thanks  to  this  new  interdisciplinary  view  and  the   invention  of  technology.  On  the  other  hand,  other  past  beliefs  about  the  brain  have   been  debunked.  For  example,  it  was  once  fashionable  to  think  of  a  right  and  a  left   brain  that  competed  for  students’  attention  and  use.  It  has  now  been  proven  beyond   a  doubt  that  the  brain  works  as  a  complex  design  of  integrated  systems,  not  through   specialized  and  competing  right-­‐  and  left-­‐brained  functions.  These  examples  show   how   past   beliefs   are   now   partnered   with   evidence   about   the   functioning   human   brain  to  produce  this  powerful,  new  teaching–learning  model.     The  Five  Well-­Established  Concepts  of  MBE  Science   The   following   summary   of   the   well-­‐established   concepts   in   MBE   science   comes  from  MBE  Science:  The  New  Brain-­Based  Education,3  which  I  wrote:     1.  Human  brains  are  as  unique  as  faces.4  Although  the  basic  structure  is  the   same,  no  two  are  identical.  While  there  are  general  patterns  of  organization  in  how   different  people  learn  and  which  brain  areas  are  involved,  each  brain  is  unique  and   uniquely   organized.   The   uniqueness   of   the   human   brain   is   perhaps   the   most   fundamental   belief   in   MBE   science.   Even   identical   twins   leave   the   womb   with   physically  distinct  brains  due  to  the  slightly  different  experiences  they  had;  one  with   his  ear  pressed  closer  to  the  uterus  wall  and  bombarded  with  sounds  and  light,  and   the   other   smuggled   down   deep   in   the   dark.   There   are   clear   patterns   of   brain   development  shared  by  all  people,  but  the  uniqueness  of  each  brain  explains  why   students   learn   in   slightly   different   ways.   Many   popular   books   try   to   exploit   this   finding  by  using  it  as  an  “excuse”  for  the  inability  of  teachers  to  reach  all  learners.   This   is   simply   irresponsible.   The   uniqueness   of   each   brain   is   not   to   be   overshadowed   by   the   fact   that   humans   as   a   species   share   clear   developmental   stages  that  set  parameters  for  learning.   2.   All   brains   are   not   equal   because   context   and   ability   influence   learning.5   Context  includes  the  learning  environment,  motivation  for  the  topic  of  new  learning,   and  prior  knowledge.  Different  people  are  born  with  different  abilities,  which  they   can  improve  upon  or  lose,  depending  on  the  stimuli  or  lack  thereof.  How  learners   receive  stimuli  is  impacted  by  what  they  bring  to  the  learning  context,  including  past   experience   and   prior   knowledge.   This   means   that   children   do   not   enter   the                                                                                                                   2 Doidge (2007). 3 Tokuhama-Espinosa (2010). 4 Tokuhama-Espinosa (2008, p. 356). 5 Tokuhama-Espinosa (2008, p. 356).
  • 5. Tracey  Tokuhama-­‐Espinosa,  Ph.D.     Jan  2011   Article  published  in  New  Horizons  in  Education   John  Hopkins  School  of  Education   http://education.jhu.edu/newhorizons   NewHorizons_SOE@jhu.edu   6740  Alexander  Bell  Drive  -­‐  Columbia,  MD  21231         410-­‐516-­‐9755     classroom  on  an  even  playing  field.  Some  are  simply  more  prepared  for  the  world   from  birth.  This  is  a  harsh  reality  to  face  because  it  explicitly  establishes  a  definitive   framework  for  potential.  The  key,  however,  is  to  maximize  this  potential.  There  are   thousands  of  people  who  are  born  with  the  potential  or  circumstances  to  be  quite   smart  who  do  not  live  up  to  this  possibility,  while  there  are  thousands  who  are  born   with  modest  potential,  but  who  maximize  this  “limitation”  well  beyond  expectations.   Genes,   previous   experiences,   and   what   the   child   does   with   his   or   her   potential   contribute  to  the  child’s  success  as  a  learner.     3.  The  brain  is  changed  by  experience.6  The  brain  is  a  complex,  dynamic,  and   integrated   system   that   is   constantly   changed   by   experience,   though   most   of   this   change   is   evident   only   at   a   microscopic   level.   You   will   go   to   bed   tonight   with   a   different  brain  from  the  one  you  had  when  you  awoke.  Each  smell,  sight,  taste,  and   touch  you  experience  and  each  feeling  or  thought  you  have  alters  the  physical  form   of  your  brain.  Although  these  brain  changes  are  often  imperceptible  unless  viewed   under  a  powerful  microscope,  they  constantly  change  the  physical  makeup  of  the   brain.  With  rehearsal,  these  changes  become  permanent—which  can  work  in  both   positive   and   negative   ways.   Areas   of   the   brain   that   are   used   together   tend   to   be   strengthened,  whereas  areas  that  are  not  stimulated  atrophy.  This  truth  gives  rise  to   the  Hebbian  synapse  concept  (1949):  Neurons  that  fire  together,  wire  together.  The   “wire  together”  part  is  a  physical  manifestation  of  how  life  experiences  change  the   brain.   In   short,   it   is   nearly   impossible   for   the   brain   not   to   learn   as   experience— broadly   defined   as   “knowledge   or   practical   wisdom   gained   from   what   one   has   observed,  encountered,  or  undergone”7  —changes  the  brain  on  a  daily  basis.   4.  The  brain  is  highly  plastic.8  Human  brains  have  a  high  degree  of  plasticity   and  develop  throughout  the  lifespan,  though  there  are  major  limits  on  this  plasticity,   and  these  limits  increase  with  age.  People  can,  and  do,  learn  throughout  their  lives.   One   of   the   most   influential   findings   of   the   20th   century   was   the   discovery   of   the   brain’s  plasticity.  This  discovery  challenges  the  earlier  belief  in  localization  (i.e.,  that   each  brain  area  had  a  highly  specific  function  that  only  that  area  could  fulfill),  which   lasted  for  hundreds  of  years.  It  has  now  been  documented  that  neuroplasticity  can   explain   why   some   people   are   able   to   recuperate   skills   thought   to   be   lost   due   to   injury.   People   born   with   only   one   hemisphere   of   the   brain,   who   nevertheless   manage   to   live   their   lives   normally,   are   an   extreme   example   of   this   plasticity.   Antonio   Battro   and   Mary   Helen   Immordino-­‐Yang,   offer   documentation   of   people   with  half  a  brain.  Antonio  Battro’s  work  on  Half  a  Brain  Is  Enough:  The  Story  of  Nico   (2000)  is  a  remarkable  documentation  of  one  child’s  life  with  just  a  half  a  brain  and   defies  previous  concepts  about  skill  set  location  in  the  brain.  Taking  Battro’s  lead,   Immordino-­‐Yang  offers  the  detailed  story  of  two  cases  in  her  recent  work,  “A  Tale  of   Two  Cases:  Lessons  for  Education  from  the  Study  of  Two  Boys  Living  with  Half  Their   Brains”  (2007).  She  shows  how  the  entire  brain  works  as  a  single  large  system,  and                                                                                                                   6 Tokuhama-Espinosa (2008, p. 356). 7 Dictionary.com (2010). Definition of learning. 8 Tokuhama-Espinosa (2008, p. 357).
  • 6. Tracey  Tokuhama-­‐Espinosa,  Ph.D.     Jan  2011   Article  published  in  New  Horizons  in  Education   John  Hopkins  School  of  Education   http://education.jhu.edu/newhorizons   NewHorizons_SOE@jhu.edu   6740  Alexander  Bell  Drive  -­‐  Columbia,  MD  21231         410-­‐516-­‐9755     when  parts  are  missing,  as  in  the  case  of  these  two  children  who  were  born  with   only   half   a   brain   each,   then   other   parts   of   the   brain   can   “take   over”   and   learn   functions  with  which  they  are  not  normally  associated.   Researchers   such   as   Paul   Bach-­‐y-­‐Rita   make   it   clear   that   “we   see   with   our   brains,  not  with  our  eyes”  (as  cited  in  Doidge,  2007,  p.  14).  That  is,  the  brain  as  a   whole   is   responsible   for   sensory   perception,   not   necessarily   a   single   part   of   the   brain.  Bach-­‐y-­‐Rita  explains  this  point  using  a  simple  metaphor:  Let’s  assume  that   you  are  driving  from  point  A  to  point  B.  You  normally  take  the  most  efficient  route,   but   if   a   bridge   is   down   or   the   road   is   blocked,   you   take   a   secondary   road.   This   secondary  road  might  not  be  as  fast  as  the  “natural”  route,  but  it  gets  you  to  point  B   all   the   same,   and   it   may   even   become   the   preferred   route   if   it   is   sufficiently   reinforced.     Perhaps  the  author  who  has  done  the  most  to  explain  neuroplasticity  to  the   public  is  physician  Norman  Doidge,  who  has  documented  studies  that  “showed  that   children  are  not  always  stuck  with  the  mental  abilities  they  are  born  with;  that  the   damaged  brain  can  often  reorganize  itself  so  that  when  one  part  fails,  another  can   often   substitute;   that   is   brain   cells   die,   they   can   at   times   be   replaced;   that   many   ‘circuits’   and   even   basic   reflexes   that   we   think   are   hardwired   are   not.”9.   Neuroplasticity   has   implications   for   brains   that   have   been   damaged,   but   also   for   basic   learning   in   classroom   experiences   and   how   we   think   about   education.   Whereas  it  was  popular  in  the  1990s  to  think  of  the  “crucial”  early  years,  it  is  now   acknowledged   that   learning   takes   place   throughout   the   lifespan.   Does   this   point   speak  against  the  privileging  of  early  childhood  educational  practices?  Not  at  all;  it   simply   means   that   under   the   right   conditions,   the   skills   that   identify   normal   developmental   stages   should   be   seen   as   benchmarks,   not   roadblocks,   because   humans  can  learn  throughout  the  lifespan.   5.  The  brain  connects  new  information  to  old.10  Connecting  new  information   to  prior  knowledge  facilitates  learning.  We  learn  better  and  faster  when  we  relate   new  information  to  things  that  we  already  know.  This  principle  may  sound  like  it   needs  no  evidence—we  experience  it  every  day.  For  example,  let’s  say  you  are  going   somewhere  you  have  never  been  before.  When  someone  gives  you  directions,  it  is   very  helpful  if  they  offer  you  a  point  of  reference  that  is  familiar  to  you  (“You’ll  see   the  post  office;  from  there,  turn  right  at  the  next  corner”).  Similarly,  when  a  child   learns,  he  or  she  builds  off  of  a  past  knowledge;  there  is  no  new  learning  without   reference  to  the  past.     It   is   unfortunate   that   new   concepts   are   sometimes   taught   in   schools   in   a   conceptual   vacuum   without   anchoring   the   information   to   what   students   already   know.   This   vacuum   is   the   reason   that   students   who   have   a   poor   foundation   in   a   particular  subject  will  continue  to  fail.  How  can  a  child  who  does  not  understand   addition  move  on  to  understand  subtraction?  To  use  a  house-­‐building  metaphor,  if   we  have  a  weak  foundation,  then  it  is  irrelevant  how  sturdy  the  walls  are,  or  how                                                                                                                   9 Doidge (2007, p. xv). 10 Tokuhama-Espinosa (2008a, p. 357).
  • 7. Tracey  Tokuhama-­‐Espinosa,  Ph.D.     Jan  2011   Article  published  in  New  Horizons  in  Education   John  Hopkins  School  of  Education   http://education.jhu.edu/newhorizons   NewHorizons_SOE@jhu.edu   6740  Alexander  Bell  Drive  -­‐  Columbia,  MD  21231         410-­‐516-­‐9755     well  built  the  roof  is;  the  structure  cannot  be  supported.  This  is  an  argument  for   quality   instruction   in   the   early   years.   Without   a   firm   foundation   in   basic   mathematical   conceptualization   (or   basic   concepts   in   language,   values,   artistic   or   social  content,  for  that  matter),  then  a  student  will  have  a  lot  of  trouble  moving  on  to   build  more  complex  conceptual  understandings.       The  well-­‐established  concepts  in  MBE  science  are  not  new  ideas.  All  five  have   been  around  for  decades,  if  not  centuries.  What  is  new  is  that  all  five  concepts  have   been  proven  without  a  doubt  in  neuroscience,  psychology,  and  educational  settings,   adding   to   their   credibility   for   use   in   planning,   curriculum   design,   classroom   methodology  design,  and  basic  pedagogy.  What  is  new  is  their  consistent  application   in   best-­‐practice   classroom   settings.   These   five   “truths”   should   guide   all   teaching   practices  as  well  as  future  research  on  better  teaching  tools.11     References   Chiles,  O.  (2006).  Test  taking  time  and  quality  of  high  school  education.  Master’s   thesis,  University  of  South  Alabama,  Mobile,  AL.  AAT  1433221.   Chun,  M.,  &  Turk-­‐Browne,  N.B.  (2007).  Interactions  between  attention  and  memory.   Current  Opinion  in  Neurobiology,  17(2),  177–184.   Doidge,  N.  (2007).  The  brain  that  changes  itself.  New  York:  Penguin.     Gibson,  J.  J.  (1982).  More  on  Affordances.  Online  memo  taken  from  E.S.  Reed  &  R.   Jones  (Eds.),  Reasons  for  realism  (pp.  406–408).  Hillsdale,  NJ:  Erlbaum.   Available  online  at   http://www.computerusability.com/Gibson/files/moreaff.html   Pashler,  H.,  McDaniel,  M.,  Rohrer,  D.,  &  Bjork,  R.  (2008).  Learning  styles:  Concepts   and  evidence.  Psychological  Science  in  the  Public  Interest,  9(3),  103–199.   Posner,  M.  (2004b).  Is  the  combination  of  psychology  and  neuroscience  important  to   you?    Impuls:  Tidsskrift  for  Psyckhologi,  3,  6–8.   Posner,  M.  (2004c).  Neural  systems  and  individual  differences.  Teachers  College   Record,  106(1), ��24–30.   Posner,  M.  (Ed.).  (2004a).  Cognitive  neuroscience  of  attention.  New  York:  Guilford   Press.                                                                                                                   11 For a thorough review of each OECD category, readers are invited to read Mind, Brain, and Education Science: The New Brain-Based Learning (Tokuhama-Espinosa, 2010a).
  • 8. Tracey  Tokuhama-­‐Espinosa,  Ph.D.     Jan  2011   Article  published  in  New  Horizons  in  Education   John  Hopkins  School  of  Education   http://education.jhu.edu/newhorizons   NewHorizons_SOE@jhu.edu   6740  Alexander  Bell  Drive  -­‐  Columbia,  MD  21231         410-­‐516-­‐9755     Sarter,  M.,  Gehring,  W.J.,  &  Kozak,  R.  (2006).  More  attention  must  be  paid:  The   neurobiology  of  attentional  effort.  Brain  Research  Reviews,  51(2),  145–160.   Smallwood,  J.,  Fishman,  D.J.,  &  Schooler,  J.W.  (2007).  Counting  the  cost  of  an  absent   mind:  Mind  wandering  as  an  under  recognized  influence  on  educational   performance.  Psychonomic  Bulletin  and  Review,  14(2),  230.   Stahl,  R.  (1990).  Using  “think-­time”  behaviors  to  promote  students'  information   processing,  learning,  and  on-­task  participation:  An  instructional  module.   Tempe,  AZ:  Arizona  State  University.   Thomas,  J.  (1972).  The  variation  of  memory  with  time  for  information  appearing   during  a  lecture.  Studies  in  Adult  Education,  4,  57–62.   Tokuhama-­‐Espinosa,  T.  (2010).  The  new  science  of  teaching  and  learning:  Using  the   best  of  mind,  brain,  and  education  science  in  the  classroom.  New  York:   Columbia  University  Teachers  College  Press.     Tokuhama-­‐Espinosa,  T.  (2008b).  Summary  of  the  international  Delphi  expert  survey   on  the  emerging  field  of  neuroeducation  (Mind,  rain,  and   Education/educational  neuroscience).  Unpublished  manuscript.   Books  on  this  topic  by  Tracey  Tokuhama-­Espinosa:   Tokuhama-­‐Espinosa,  T.  (2010).  The  new  science  of  teaching  and  learning:  Using  the   best  of  mind,  brain,  and  education  science  in  the  classroom.  New  York:   Columbia  University  Teachers  College  Press.     Tokuhama-­‐Espinosa,  T.  (2010).  Mind,  Brain,  and  Education  Science:  The  new  brain-­ based  learning.  New  York,  NY:  W.W:  Norton.