SlideShare a Scribd company logo
“ Evolución de la Arquitectura de Computadores ” Valladolid, Septiembre 2010 Prof. Mateo Valero   Director
Technological Achievements Transistor (Bell Labs, 1947) DEC PDP-1 (1957) IBM 7090 (1960) Integrated circuit (1958) IBM System 360 (1965) DEC PDP-8 (1965) Microprocessor (1971) Intel 4004
Pipeline  (H. Ford)
Technology Trends
 
 
Power Density 1 10 100 1000           i386 i486 Pentium®  Pentium® Pro Pentium® II Pentium® III Hot plate Nuclear Reactor Sun's Surface Rocket Nozzle * “New Microarchitecture Challenges in the Coming Generations of CMOS Process Technologies” – Fred Pollack, Intel Corp. Micro32 conference keynote - 1999. Pentium® 4 Watts/cm 2
 
Technology Outlook Shekhar Borkar, Micro37, P Medium  High  Very High Variability Energy scaling will slow down >0.5 >0.5 >0.35 Energy/Logic Op scaling 0.5 to 1 layer per generation 8-9 7-8 6-7 Metal Layers 1 1 1 1 1 1 1 1 RC Delay Reduce slowly towards 2-2.5 <3 ~3 ILD (K) Low Probability  High Probability Alternate, 3G etc 128 11 2016 High Probability  Low Probability Bulk Planar CMOS Delay scaling will slow down >0.7 ~0.7 0.7 Delay = CV/I scaling 256 64 32 16 8 4 2 Integration Capacity (BT) 8 16 22 32 45 65 90 Technology Node (nm) 2018 2014 2012 2010 2008 2006 2004 High Volume  Manufacturing
We have seen increasing number of gates on a chip and increasing clock speed. Heat becoming an unmanageable problem, Intel Processors > 100 Watts We will not see the dramatic increases in clock speeds in the future. However, the number of  gates on a chip will  continue to increase. Increasing the number of gates into a tight knot and decreasing the cycle time of the processor Lower Voltage Increase Clock Rate & Transistor Density Core Cache Core Cache Core C1 C2 C3 C4 Cache C1 C2 C3 C4 Cache C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4
Increasing chip performance:  Intel´s Petaflop chip 80 processors in a die of 300 square mm. Terabytes per second of memory bandwidth Note: The barrier of the  Teraflops  was obtained by Intel in  1991  using  10.000 Pentium  Pro processors contained in more than 85 cabinets occupying 200 square meters   This will be possible in 3 years from now ICPP-2009, September 23rd 2009 Thanks to Intel
NVIDIA Fermi Architecture Unified 768KB L2 cache serves all threads GigaThread hardware scheduler assigns Thread Blocks to SMs Wide DRAM interface provides 12 GB/s bandwidth 16 Streaming- Multiprocessors (512 cores)  execute Thread Blocks 620 Gigaflops
Cell Broadband Engine  TM : A Heterogeneous Multi-core Architecture * Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc.
Intel/UPC Since 2002 (Roger  Espasa, Toni Juan) 40 People Microprocessor  Development (Larrabee x86 many core)
Top10
Looking at the Gordon Bell Prize 1 GFlop/s; 1988; Cray Y-MP; 8 Processors Static finite element analysis 1 TFlop/s; 1998; Cray T3E; 1024 Processors Modeling of metallic magnet atoms, using a  variation of the locally self-consistent multiple  scattering method. 1 PFlop/s; 2008; Cray XT5; 1.5x10 5  Processors Superconductive materials 1 EFlop/s; ~2018;  ?; 1x10 7  Processors (10 9  threads)  Jack Dongarra
BSC-CNS e iniciativas a nivel internacional: IESP Build an international plan for developing the next generation open source software for scientific high-performance computing Improve the world’s simulation and modeling capability by improving the coordination and development of the HPC software environment
1 EFlop/s “Clean Sheet of Paper” Strawman 4 FPUs+RegFiles/Core (=6 GF @1.5GHz) 1 Chip =  742  Cores  (=4.5TF/s) 213MB of L1I&D; 93MB of L2 1  Node  = 1 Proc Chip + 16 DRAMs (16GB) 1  Group  = 12 Nodes + 12 Routers (=54TF/s) 1  Rack  = 32 Groups (=1.7 PF/s) 384 nodes / rack 3.6EB of Disk Storage included  1  System  = 583 Racks (=1 EF/s) 166 MILLION cores 680 MILLION FPUs 3.6PB = 0.0036 bytes/flops 68 MW  w’aggressive  assumptions Sizing done by “balancing” power budgets with achievable capabilities Largely due to Bill Dally Courtesy of Peter Kogge, UND
Education for Parallel Programming  Multicore-based pacifier I  multi-core programming I  many-core programming We all  massive  parallel  prog. I  games
Navigating the Mare Nostrum
Initial developments Mechanical machines 1854: Boolean algebra by G. Boole 1904: Diode vacuum tube by J.A. Fleming 1938: Boolean Algebra & Electronics Switches, C. Shannon 1946: ENIAC by J.P. Eckert and J. Mauchly 1945: Stored program by J.V. Neuma nn  ?????? 1947 : First transistor (Bell Labs) 1949: EDSAC by M. Wilkes 1952: UNIVAC I and IBM 701
In 50 Years ... Eniac ,  Eckert&Mauchly1946  ...  18000 vacuum tubes Pentium III playing DVD,  1998 ... 24 M transistors
Technology Trends:  Microprocessor Capacity 2X transistors/Chip Every 1.5 years Called “ Moore’s Law ” Moore’s Law Microprocessors have become smaller, denser, and more powerful. Not just processors, bandwidth, storage, etc Gordon Moore (co-founder of Intel) predicted in 1965 that the transistor density of semiconductor chips would double roughly every 18 months.
 
Computer Architecture Achievements 1951 : Microprogramming (M. Wilkes) 1962 : Virtual Memory (Atlas, Manchester) 1964 :  Pipeline  (CDC 6600, S. Cray, 10 Mflop/s) 1965 : Cache memory (M. Wilkes) 1975 :  Vector processors  (S. Cray) 1980 :  RISC architecture  (IBM, Berkeley, Stanford) 1982 : Multiprocessors with distributed memory 1990 :  Superscalar  processors :   PA-Risc (HP) and RS-6000  (IBM) 1991 : Multiprocessors with distributed shared memory 1994 :  SMT  (M. Nemirowski, D. Tullsen, S. Eggers) 1994 : Speculative Multiprocessors ( G. Sohi, Winsconsin) 1996 : Value Prediction (J.P.Shen and M.Lipasti, CMU)  2000: Multicore/Manycore Architectures
 
Virtual Worlds have huge potential beyond Games Commerce & Advertising Corporate Education First Responders Government Health Military Science Community Facilitation Social Change
Cray XT5-HE system Over 37,500 quad-core AMD Opteron processors running at 2.6 GHz, 224,162 cores. Power: 6.95 Mwatts 300 terabytes of memory 10 petabytes of disk space. 240 gigabytes per second  disk bandwidth Cray's SeaStar2+  interconnect network.  Jaguar @ ORNL: 1.75 PF/s Jack Dongarra
MareIncognito: Project structure 4 relevant apps: Materials: SIESTA Geophisics imaging: RTM Comp. Mechanics: ALYA Plasma: EUTERPE General kernels  Automatic analysis Coarse/fine grain prediction Sampling Clustering Integration with Peekperf Contention, Collectives Overlap computation/communication Slimmed Networks Direct versus indirect networks Contribution to new Cell design Support for programming model Support for load balancing Support for performance tools Issues for future processors Coordinated scheduling: Run time, Process, Job Power efficiency  StarSs: CellSs, SMPSs [email_address] OpenMP++ MPI + OpenMP/StarSs  Performance analysis tools Processor and node Load balancing Interconnect Applications Programming models Models and prototype
Supercomputación y eCiencia 22 grupos de élite M ás de 120 investigadores seniors Más de 300 estudiantes de doctorado BSC-CNS: vertebrador de la investigación en supercomputación en España Application scope “Earth Sciences” Application scope “Astrophysics” Application scope “Engineering” Application scope “Physics” Application scope “Life Sciences” Compilers and  tuning of application  kernels Programming  models and  performance  tuning tools Architectures and hardware technologies
High Performance Computing as key-enabler 1980 1990 2000 2010 2020 2030 Capacity:  #  of Overnight  Loads cases run Available  Computational Capacity [Flop/s] CFD-based LOADS  & HQ Aero  Optimisation & CFD-CSM Full MDO Real time  CFD based  in flight  simulation x10 6 1 Zeta  (10 21 ) 1 Peta (10 15 ) 1 Tera (10 12 ) 1 Giga (10 9 ) 1 Exa (10 18 ) 10 2 10 3 10 4 10 5 10 6 LES CFD-based noise  simulation RANS Low Speed  RANS High Speed  HS  Design Data  Set UnsteadyRANS “ Smart” use of HPC power: Algorithms Data mining knowledge Capability  achieved during one night batch   Courtesy AIRBUS France
Diseño del ITER TOKAMAK (JET, Oxford)
Supercomputación, teoría y experimentación  Cortesia de IBM
Weather, Climate and Earth Sciences: Roadmap 2009 Resolution : 80 Km Memory:  ≈110 GB Storage: ≈ 8 TB NEC-SX9 48 vector procs:  ≈ 40 days run 2015 Resolution : 20 Km MemSory:  ≈ 3,5 TB Storage: ≈ 180 TB High resolution model with complete carbon cycle model Challenges: data viz and post-processing, data discovery, archiving 2020 Resolution : 1 Km Memory:  ≈ 4 PB Storage: ≈ 150 PB Higher resolution with global cloud resolving model Challenges: data sharing, transfer memory management, I/O management
Education for Parallel Programming  Multicore-based pacifier I  multi-core programming I  many-core programming We all  massive  parallel  prog. I  games
Navigating the Mare Nostrum

More Related Content

What's hot

Latest HPC News from NVIDIA
Latest HPC News from NVIDIALatest HPC News from NVIDIA
Latest HPC News from NVIDIA
inside-BigData.com
 
World’s Fastest Supercomputer | Tianhe - 2
World’s Fastest Supercomputer |  Tianhe - 2World’s Fastest Supercomputer |  Tianhe - 2
World’s Fastest Supercomputer | Tianhe - 2
Chamin Nalinda Loku Gam Hewage
 
08 Supercomputer Fugaku
08 Supercomputer Fugaku08 Supercomputer Fugaku
08 Supercomputer Fugaku
RCCSRENKEI
 
Evolution of modern super computers
Evolution of modern  super computersEvolution of modern  super computers
Evolution of modern super computers
shuchi tripathi
 
Accelerating Scientific Discovery V1
Accelerating Scientific Discovery V1Accelerating Scientific Discovery V1
Accelerating Scientific Discovery V1
Shanker Trivedi
 
Japan Lustre User Group 2014
Japan Lustre User Group 2014Japan Lustre User Group 2014
Japan Lustre User Group 2014
Hitoshi Sato
 
Top 10 Supercomputer 2014
Top 10 Supercomputer 2014Top 10 Supercomputer 2014
supercomputer
supercomputersupercomputer
supercomputer
panjab university
 
JETSON : AI at the EDGE
JETSON : AI at the EDGEJETSON : AI at the EDGE
JETSON : AI at the EDGE
Skolkovo Robotics Center
 
Exploring Garbage Collection
Exploring Garbage CollectionExploring Garbage Collection
Exploring Garbage Collection
ESUG
 
A Platform for Accelerating Machine Learning Applications
 A Platform for Accelerating Machine Learning Applications A Platform for Accelerating Machine Learning Applications
A Platform for Accelerating Machine Learning Applications
NVIDIA Taiwan
 
Cray-1 The First Supercomputer
Cray-1 The First SupercomputerCray-1 The First Supercomputer
Cray-1 The First Supercomputer
MNNIT
 
Super Computers
Super ComputersSuper Computers
Super Computers
SAIMANOHARGANDREDDI
 
最新の HPC 技術を生かした AI・ビッグデータインフラの東工大 TSUBAME3.0 及び産総研 ABCI
最新の HPC 技術を生かした AI・ビッグデータインフラの東工大 TSUBAME3.0 及び産総研 ABCI最新の HPC 技術を生かした AI・ビッグデータインフラの東工大 TSUBAME3.0 及び産総研 ABCI
最新の HPC 技術を生かした AI・ビッグデータインフラの東工大 TSUBAME3.0 及び産総研 ABCI
NVIDIA Japan
 
Supercomputers
SupercomputersSupercomputers
Supercomputers
1jpost
 
customization of a deep learning accelerator, based on NVDLA
customization of a deep learning accelerator, based on NVDLAcustomization of a deep learning accelerator, based on NVDLA
customization of a deep learning accelerator, based on NVDLA
Shien-Chun Luo
 
Towards Exascale Simulations of Stellar Explosions with FLASH
Towards Exascale  Simulations of Stellar  Explosions with FLASHTowards Exascale  Simulations of Stellar  Explosions with FLASH
Towards Exascale Simulations of Stellar Explosions with FLASH
Ganesan Narayanasamy
 
Designing High Performance Computing Architectures for Reliable Space Applica...
Designing High Performance Computing Architectures for Reliable Space Applica...Designing High Performance Computing Architectures for Reliable Space Applica...
Designing High Performance Computing Architectures for Reliable Space Applica...
Fisnik Kraja
 
Supercomputer @ manarat university by reza
Supercomputer  @ manarat university by rezaSupercomputer  @ manarat university by reza
Supercomputer @ manarat university by reza
manarat international university
 
Supercomputers
SupercomputersSupercomputers
Supercomputers
parwind
 

What's hot (20)

Latest HPC News from NVIDIA
Latest HPC News from NVIDIALatest HPC News from NVIDIA
Latest HPC News from NVIDIA
 
World’s Fastest Supercomputer | Tianhe - 2
World’s Fastest Supercomputer |  Tianhe - 2World’s Fastest Supercomputer |  Tianhe - 2
World’s Fastest Supercomputer | Tianhe - 2
 
08 Supercomputer Fugaku
08 Supercomputer Fugaku08 Supercomputer Fugaku
08 Supercomputer Fugaku
 
Evolution of modern super computers
Evolution of modern  super computersEvolution of modern  super computers
Evolution of modern super computers
 
Accelerating Scientific Discovery V1
Accelerating Scientific Discovery V1Accelerating Scientific Discovery V1
Accelerating Scientific Discovery V1
 
Japan Lustre User Group 2014
Japan Lustre User Group 2014Japan Lustre User Group 2014
Japan Lustre User Group 2014
 
Top 10 Supercomputer 2014
Top 10 Supercomputer 2014Top 10 Supercomputer 2014
Top 10 Supercomputer 2014
 
supercomputer
supercomputersupercomputer
supercomputer
 
JETSON : AI at the EDGE
JETSON : AI at the EDGEJETSON : AI at the EDGE
JETSON : AI at the EDGE
 
Exploring Garbage Collection
Exploring Garbage CollectionExploring Garbage Collection
Exploring Garbage Collection
 
A Platform for Accelerating Machine Learning Applications
 A Platform for Accelerating Machine Learning Applications A Platform for Accelerating Machine Learning Applications
A Platform for Accelerating Machine Learning Applications
 
Cray-1 The First Supercomputer
Cray-1 The First SupercomputerCray-1 The First Supercomputer
Cray-1 The First Supercomputer
 
Super Computers
Super ComputersSuper Computers
Super Computers
 
最新の HPC 技術を生かした AI・ビッグデータインフラの東工大 TSUBAME3.0 及び産総研 ABCI
最新の HPC 技術を生かした AI・ビッグデータインフラの東工大 TSUBAME3.0 及び産総研 ABCI最新の HPC 技術を生かした AI・ビッグデータインフラの東工大 TSUBAME3.0 及び産総研 ABCI
最新の HPC 技術を生かした AI・ビッグデータインフラの東工大 TSUBAME3.0 及び産総研 ABCI
 
Supercomputers
SupercomputersSupercomputers
Supercomputers
 
customization of a deep learning accelerator, based on NVDLA
customization of a deep learning accelerator, based on NVDLAcustomization of a deep learning accelerator, based on NVDLA
customization of a deep learning accelerator, based on NVDLA
 
Towards Exascale Simulations of Stellar Explosions with FLASH
Towards Exascale  Simulations of Stellar  Explosions with FLASHTowards Exascale  Simulations of Stellar  Explosions with FLASH
Towards Exascale Simulations of Stellar Explosions with FLASH
 
Designing High Performance Computing Architectures for Reliable Space Applica...
Designing High Performance Computing Architectures for Reliable Space Applica...Designing High Performance Computing Architectures for Reliable Space Applica...
Designing High Performance Computing Architectures for Reliable Space Applica...
 
Supercomputer @ manarat university by reza
Supercomputer  @ manarat university by rezaSupercomputer  @ manarat university by reza
Supercomputer @ manarat university by reza
 
Supercomputers
SupercomputersSupercomputers
Supercomputers
 

Similar to Valladolid final-septiembre-2010

[RakutenTechConf2013] [A-3] TSUBAME2.5 to 3.0 and Convergence with Extreme Bi...
[RakutenTechConf2013] [A-3] TSUBAME2.5 to 3.0 and Convergence with Extreme Bi...[RakutenTechConf2013] [A-3] TSUBAME2.5 to 3.0 and Convergence with Extreme Bi...
[RakutenTechConf2013] [A-3] TSUBAME2.5 to 3.0 and Convergence with Extreme Bi...
Rakuten Group, Inc.
 
Future Commodity Chip Called CELL for HPC
Future Commodity Chip Called CELL for HPCFuture Commodity Chip Called CELL for HPC
Future Commodity Chip Called CELL for HPC
Slide_N
 
Semiconductor overview
Semiconductor overviewSemiconductor overview
Semiconductor overview
Nabil Chouba
 
Parallelism Processor Design
Parallelism Processor DesignParallelism Processor Design
Parallelism Processor Design
Sri Prasanna
 
Nikravesh big datafeb2013bt
Nikravesh big datafeb2013btNikravesh big datafeb2013bt
Nikravesh big datafeb2013bt
Masoud Nikravesh
 
Anegdotic Maxeler (Romania)
  Anegdotic Maxeler (Romania)  Anegdotic Maxeler (Romania)
Anegdotic Maxeler (Romania)
Valentina Emilia Balas
 
Mateo Valero - Big data: de la investigación científica a la gestión empresarial
Mateo Valero - Big data: de la investigación científica a la gestión empresarialMateo Valero - Big data: de la investigación científica a la gestión empresarial
Mateo Valero - Big data: de la investigación científica a la gestión empresarial
Fundación Ramón Areces
 
Roadrunner Tutorial: An Introduction to Roadrunner and the Cell Processor
Roadrunner Tutorial: An Introduction to Roadrunner and the Cell ProcessorRoadrunner Tutorial: An Introduction to Roadrunner and the Cell Processor
Roadrunner Tutorial: An Introduction to Roadrunner and the Cell Processor
Slide_N
 
Evolution of Computing Microprocessors and SoCs
Evolution of Computing Microprocessors and SoCsEvolution of Computing Microprocessors and SoCs
Evolution of Computing Microprocessors and SoCs
azmathmoosa
 
Exascale Capabl
Exascale CapablExascale Capabl
Exascale Capabl
Sagar Dolas
 
DileepB EDPS talk 2015
DileepB  EDPS talk 2015DileepB  EDPS talk 2015
DileepB EDPS talk 2015
Dileep Bhandarkar
 
Technology overview
Technology overviewTechnology overview
Technology overview
virtuehm
 
The Coming Age of Extreme Heterogeneity in HPC
The Coming Age of Extreme Heterogeneity in HPCThe Coming Age of Extreme Heterogeneity in HPC
The Coming Age of Extreme Heterogeneity in HPC
inside-BigData.com
 
Super Computer15 updated
Super Computer15 updatedSuper Computer15 updated
Super Computer15 updated
shashthoughts
 
End nodes in the Multigigabit era
End nodes in the Multigigabit eraEnd nodes in the Multigigabit era
End nodes in the Multigigabit era
rinnocente
 
Lllsjjsjsjjshshjshjsjjsjjsjjzjsjjzjjzjjzj
LllsjjsjsjjshshjshjsjjsjjsjjzjsjjzjjzjjzjLllsjjsjsjjshshjshjsjjsjjsjjzjsjjzjjzjjzj
Lllsjjsjsjjshshjshjsjjsjjsjjzjsjjzjjzjjzj
ManhHoangVan
 
Experiences in Application Specific Supercomputer Design - Reasons, Challenge...
Experiences in Application Specific Supercomputer Design - Reasons, Challenge...Experiences in Application Specific Supercomputer Design - Reasons, Challenge...
Experiences in Application Specific Supercomputer Design - Reasons, Challenge...
Heiko Joerg Schick
 
The Optiputer - Toward a Terabit LAN
The Optiputer - Toward a Terabit LANThe Optiputer - Toward a Terabit LAN
The Optiputer - Toward a Terabit LAN
Larry Smarr
 
Cloud Computing,雲端運算-中研院網格計畫主持人林誠謙
Cloud Computing,雲端運算-中研院網格計畫主持人林誠謙Cloud Computing,雲端運算-中研院網格計畫主持人林誠謙
Cloud Computing,雲端運算-中研院網格計畫主持人林誠謙
Tracy Chen
 
Multiple Cores, Multiple Pipes, Multiple Threads – Do we have more Parallelis...
Multiple Cores, Multiple Pipes, Multiple Threads – Do we have more Parallelis...Multiple Cores, Multiple Pipes, Multiple Threads – Do we have more Parallelis...
Multiple Cores, Multiple Pipes, Multiple Threads – Do we have more Parallelis...
Slide_N
 

Similar to Valladolid final-septiembre-2010 (20)

[RakutenTechConf2013] [A-3] TSUBAME2.5 to 3.0 and Convergence with Extreme Bi...
[RakutenTechConf2013] [A-3] TSUBAME2.5 to 3.0 and Convergence with Extreme Bi...[RakutenTechConf2013] [A-3] TSUBAME2.5 to 3.0 and Convergence with Extreme Bi...
[RakutenTechConf2013] [A-3] TSUBAME2.5 to 3.0 and Convergence with Extreme Bi...
 
Future Commodity Chip Called CELL for HPC
Future Commodity Chip Called CELL for HPCFuture Commodity Chip Called CELL for HPC
Future Commodity Chip Called CELL for HPC
 
Semiconductor overview
Semiconductor overviewSemiconductor overview
Semiconductor overview
 
Parallelism Processor Design
Parallelism Processor DesignParallelism Processor Design
Parallelism Processor Design
 
Nikravesh big datafeb2013bt
Nikravesh big datafeb2013btNikravesh big datafeb2013bt
Nikravesh big datafeb2013bt
 
Anegdotic Maxeler (Romania)
  Anegdotic Maxeler (Romania)  Anegdotic Maxeler (Romania)
Anegdotic Maxeler (Romania)
 
Mateo Valero - Big data: de la investigación científica a la gestión empresarial
Mateo Valero - Big data: de la investigación científica a la gestión empresarialMateo Valero - Big data: de la investigación científica a la gestión empresarial
Mateo Valero - Big data: de la investigación científica a la gestión empresarial
 
Roadrunner Tutorial: An Introduction to Roadrunner and the Cell Processor
Roadrunner Tutorial: An Introduction to Roadrunner and the Cell ProcessorRoadrunner Tutorial: An Introduction to Roadrunner and the Cell Processor
Roadrunner Tutorial: An Introduction to Roadrunner and the Cell Processor
 
Evolution of Computing Microprocessors and SoCs
Evolution of Computing Microprocessors and SoCsEvolution of Computing Microprocessors and SoCs
Evolution of Computing Microprocessors and SoCs
 
Exascale Capabl
Exascale CapablExascale Capabl
Exascale Capabl
 
DileepB EDPS talk 2015
DileepB  EDPS talk 2015DileepB  EDPS talk 2015
DileepB EDPS talk 2015
 
Technology overview
Technology overviewTechnology overview
Technology overview
 
The Coming Age of Extreme Heterogeneity in HPC
The Coming Age of Extreme Heterogeneity in HPCThe Coming Age of Extreme Heterogeneity in HPC
The Coming Age of Extreme Heterogeneity in HPC
 
Super Computer15 updated
Super Computer15 updatedSuper Computer15 updated
Super Computer15 updated
 
End nodes in the Multigigabit era
End nodes in the Multigigabit eraEnd nodes in the Multigigabit era
End nodes in the Multigigabit era
 
Lllsjjsjsjjshshjshjsjjsjjsjjzjsjjzjjzjjzj
LllsjjsjsjjshshjshjsjjsjjsjjzjsjjzjjzjjzjLllsjjsjsjjshshjshjsjjsjjsjjzjsjjzjjzjjzj
Lllsjjsjsjjshshjshjsjjsjjsjjzjsjjzjjzjjzj
 
Experiences in Application Specific Supercomputer Design - Reasons, Challenge...
Experiences in Application Specific Supercomputer Design - Reasons, Challenge...Experiences in Application Specific Supercomputer Design - Reasons, Challenge...
Experiences in Application Specific Supercomputer Design - Reasons, Challenge...
 
The Optiputer - Toward a Terabit LAN
The Optiputer - Toward a Terabit LANThe Optiputer - Toward a Terabit LAN
The Optiputer - Toward a Terabit LAN
 
Cloud Computing,雲端運算-中研院網格計畫主持人林誠謙
Cloud Computing,雲端運算-中研院網格計畫主持人林誠謙Cloud Computing,雲端運算-中研院網格計畫主持人林誠謙
Cloud Computing,雲端運算-中研院網格計畫主持人林誠謙
 
Multiple Cores, Multiple Pipes, Multiple Threads – Do we have more Parallelis...
Multiple Cores, Multiple Pipes, Multiple Threads – Do we have more Parallelis...Multiple Cores, Multiple Pipes, Multiple Threads – Do we have more Parallelis...
Multiple Cores, Multiple Pipes, Multiple Threads – Do we have more Parallelis...
 

More from TELECOM I+D

Calidad experiencia servicios_multimedia_sobre_ip
Calidad experiencia servicios_multimedia_sobre_ipCalidad experiencia servicios_multimedia_sobre_ip
Calidad experiencia servicios_multimedia_sobre_ip
TELECOM I+D
 
Analysis optimization video_download_mobile_services
Analysis optimization video_download_mobile_servicesAnalysis optimization video_download_mobile_services
Analysis optimization video_download_mobile_services
TELECOM I+D
 
Analisis respuesta canal_red_alimentacion_vehiculo
Analisis respuesta canal_red_alimentacion_vehiculoAnalisis respuesta canal_red_alimentacion_vehiculo
Analisis respuesta canal_red_alimentacion_vehiculo
TELECOM I+D
 
Sla management framework_telecommunication_services
Sla management framework_telecommunication_servicesSla management framework_telecommunication_services
Sla management framework_telecommunication_services
TELECOM I+D
 
Evaluacion prestaciones sistema_ofdm_sobre_red_alimentacion_vehiculo
Evaluacion prestaciones sistema_ofdm_sobre_red_alimentacion_vehiculoEvaluacion prestaciones sistema_ofdm_sobre_red_alimentacion_vehiculo
Evaluacion prestaciones sistema_ofdm_sobre_red_alimentacion_vehiculo
TELECOM I+D
 
Manticore telecom2010
Manticore telecom2010Manticore telecom2010
Manticore telecom2010
TELECOM I+D
 
Simulador hibrido redes_heterogeneas_modulo_wi_max
Simulador hibrido redes_heterogeneas_modulo_wi_maxSimulador hibrido redes_heterogeneas_modulo_wi_max
Simulador hibrido redes_heterogeneas_modulo_wi_max
TELECOM I+D
 
Genesisx nuevos avances_servicios_arquitecturas_ngn
Genesisx nuevos avances_servicios_arquitecturas_ngnGenesisx nuevos avances_servicios_arquitecturas_ngn
Genesisx nuevos avances_servicios_arquitecturas_ngn
TELECOM I+D
 
Real time mimo_lte_test_bed
Real time mimo_lte_test_bedReal time mimo_lte_test_bed
Real time mimo_lte_test_bed
TELECOM I+D
 
Semantically enabling u_pn_p_networks_multimedia_home_content
Semantically enabling u_pn_p_networks_multimedia_home_contentSemantically enabling u_pn_p_networks_multimedia_home_content
Semantically enabling u_pn_p_networks_multimedia_home_content
TELECOM I+D
 
Nuba plataforma de_cloud_federada_para_servicios_de_infraestructura
Nuba plataforma de_cloud_federada_para_servicios_de_infraestructuraNuba plataforma de_cloud_federada_para_servicios_de_infraestructura
Nuba plataforma de_cloud_federada_para_servicios_de_infraestructura
TELECOM I+D
 
Mecanismos ahorroenergiatrafico v2
Mecanismos ahorroenergiatrafico v2Mecanismos ahorroenergiatrafico v2
Mecanismos ahorroenergiatrafico v2
TELECOM I+D
 
Tu yo nostros_viajamos
Tu yo nostros_viajamosTu yo nostros_viajamos
Tu yo nostros_viajamos
TELECOM I+D
 
Ponencia vitalas telecom2010_v4.0
Ponencia vitalas telecom2010_v4.0Ponencia vitalas telecom2010_v4.0
Ponencia vitalas telecom2010_v4.0
TELECOM I+D
 
Gestion calidad experiencia_usuarios_servicios_telecomunicaciones
Gestion calidad experiencia_usuarios_servicios_telecomunicacionesGestion calidad experiencia_usuarios_servicios_telecomunicaciones
Gestion calidad experiencia_usuarios_servicios_telecomunicaciones
TELECOM I+D
 
Sistema deteccion guiado_indoor_mediante_dispositivo_movil_tecnologia_bluetooth
Sistema deteccion guiado_indoor_mediante_dispositivo_movil_tecnologia_bluetoothSistema deteccion guiado_indoor_mediante_dispositivo_movil_tecnologia_bluetooth
Sistema deteccion guiado_indoor_mediante_dispositivo_movil_tecnologia_bluetooth
TELECOM I+D
 
Optimizacion redes dvb_t_provision_servicios_locales_moviles
Optimizacion redes dvb_t_provision_servicios_locales_movilesOptimizacion redes dvb_t_provision_servicios_locales_moviles
Optimizacion redes dvb_t_provision_servicios_locales_moviles
TELECOM I+D
 
Sistema comunicacion oral_personas_sordas
Sistema comunicacion oral_personas_sordasSistema comunicacion oral_personas_sordas
Sistema comunicacion oral_personas_sordas
TELECOM I+D
 
Ponencia telecom2010 alu_gti_def
Ponencia telecom2010 alu_gti_defPonencia telecom2010 alu_gti_def
Ponencia telecom2010 alu_gti_def
TELECOM I+D
 
2010 09-29 mesa tic jitel valladolid
2010 09-29 mesa tic jitel valladolid2010 09-29 mesa tic jitel valladolid
2010 09-29 mesa tic jitel valladolid
TELECOM I+D
 

More from TELECOM I+D (20)

Calidad experiencia servicios_multimedia_sobre_ip
Calidad experiencia servicios_multimedia_sobre_ipCalidad experiencia servicios_multimedia_sobre_ip
Calidad experiencia servicios_multimedia_sobre_ip
 
Analysis optimization video_download_mobile_services
Analysis optimization video_download_mobile_servicesAnalysis optimization video_download_mobile_services
Analysis optimization video_download_mobile_services
 
Analisis respuesta canal_red_alimentacion_vehiculo
Analisis respuesta canal_red_alimentacion_vehiculoAnalisis respuesta canal_red_alimentacion_vehiculo
Analisis respuesta canal_red_alimentacion_vehiculo
 
Sla management framework_telecommunication_services
Sla management framework_telecommunication_servicesSla management framework_telecommunication_services
Sla management framework_telecommunication_services
 
Evaluacion prestaciones sistema_ofdm_sobre_red_alimentacion_vehiculo
Evaluacion prestaciones sistema_ofdm_sobre_red_alimentacion_vehiculoEvaluacion prestaciones sistema_ofdm_sobre_red_alimentacion_vehiculo
Evaluacion prestaciones sistema_ofdm_sobre_red_alimentacion_vehiculo
 
Manticore telecom2010
Manticore telecom2010Manticore telecom2010
Manticore telecom2010
 
Simulador hibrido redes_heterogeneas_modulo_wi_max
Simulador hibrido redes_heterogeneas_modulo_wi_maxSimulador hibrido redes_heterogeneas_modulo_wi_max
Simulador hibrido redes_heterogeneas_modulo_wi_max
 
Genesisx nuevos avances_servicios_arquitecturas_ngn
Genesisx nuevos avances_servicios_arquitecturas_ngnGenesisx nuevos avances_servicios_arquitecturas_ngn
Genesisx nuevos avances_servicios_arquitecturas_ngn
 
Real time mimo_lte_test_bed
Real time mimo_lte_test_bedReal time mimo_lte_test_bed
Real time mimo_lte_test_bed
 
Semantically enabling u_pn_p_networks_multimedia_home_content
Semantically enabling u_pn_p_networks_multimedia_home_contentSemantically enabling u_pn_p_networks_multimedia_home_content
Semantically enabling u_pn_p_networks_multimedia_home_content
 
Nuba plataforma de_cloud_federada_para_servicios_de_infraestructura
Nuba plataforma de_cloud_federada_para_servicios_de_infraestructuraNuba plataforma de_cloud_federada_para_servicios_de_infraestructura
Nuba plataforma de_cloud_federada_para_servicios_de_infraestructura
 
Mecanismos ahorroenergiatrafico v2
Mecanismos ahorroenergiatrafico v2Mecanismos ahorroenergiatrafico v2
Mecanismos ahorroenergiatrafico v2
 
Tu yo nostros_viajamos
Tu yo nostros_viajamosTu yo nostros_viajamos
Tu yo nostros_viajamos
 
Ponencia vitalas telecom2010_v4.0
Ponencia vitalas telecom2010_v4.0Ponencia vitalas telecom2010_v4.0
Ponencia vitalas telecom2010_v4.0
 
Gestion calidad experiencia_usuarios_servicios_telecomunicaciones
Gestion calidad experiencia_usuarios_servicios_telecomunicacionesGestion calidad experiencia_usuarios_servicios_telecomunicaciones
Gestion calidad experiencia_usuarios_servicios_telecomunicaciones
 
Sistema deteccion guiado_indoor_mediante_dispositivo_movil_tecnologia_bluetooth
Sistema deteccion guiado_indoor_mediante_dispositivo_movil_tecnologia_bluetoothSistema deteccion guiado_indoor_mediante_dispositivo_movil_tecnologia_bluetooth
Sistema deteccion guiado_indoor_mediante_dispositivo_movil_tecnologia_bluetooth
 
Optimizacion redes dvb_t_provision_servicios_locales_moviles
Optimizacion redes dvb_t_provision_servicios_locales_movilesOptimizacion redes dvb_t_provision_servicios_locales_moviles
Optimizacion redes dvb_t_provision_servicios_locales_moviles
 
Sistema comunicacion oral_personas_sordas
Sistema comunicacion oral_personas_sordasSistema comunicacion oral_personas_sordas
Sistema comunicacion oral_personas_sordas
 
Ponencia telecom2010 alu_gti_def
Ponencia telecom2010 alu_gti_defPonencia telecom2010 alu_gti_def
Ponencia telecom2010 alu_gti_def
 
2010 09-29 mesa tic jitel valladolid
2010 09-29 mesa tic jitel valladolid2010 09-29 mesa tic jitel valladolid
2010 09-29 mesa tic jitel valladolid
 

Valladolid final-septiembre-2010

  • 1. “ Evolución de la Arquitectura de Computadores ” Valladolid, Septiembre 2010 Prof. Mateo Valero Director
  • 2. Technological Achievements Transistor (Bell Labs, 1947) DEC PDP-1 (1957) IBM 7090 (1960) Integrated circuit (1958) IBM System 360 (1965) DEC PDP-8 (1965) Microprocessor (1971) Intel 4004
  • 3. Pipeline (H. Ford)
  • 5.  
  • 6.  
  • 7. Power Density 1 10 100 1000           i386 i486 Pentium® Pentium® Pro Pentium® II Pentium® III Hot plate Nuclear Reactor Sun's Surface Rocket Nozzle * “New Microarchitecture Challenges in the Coming Generations of CMOS Process Technologies” – Fred Pollack, Intel Corp. Micro32 conference keynote - 1999. Pentium® 4 Watts/cm 2
  • 8.  
  • 9. Technology Outlook Shekhar Borkar, Micro37, P Medium High Very High Variability Energy scaling will slow down >0.5 >0.5 >0.35 Energy/Logic Op scaling 0.5 to 1 layer per generation 8-9 7-8 6-7 Metal Layers 1 1 1 1 1 1 1 1 RC Delay Reduce slowly towards 2-2.5 <3 ~3 ILD (K) Low Probability High Probability Alternate, 3G etc 128 11 2016 High Probability Low Probability Bulk Planar CMOS Delay scaling will slow down >0.7 ~0.7 0.7 Delay = CV/I scaling 256 64 32 16 8 4 2 Integration Capacity (BT) 8 16 22 32 45 65 90 Technology Node (nm) 2018 2014 2012 2010 2008 2006 2004 High Volume Manufacturing
  • 10. We have seen increasing number of gates on a chip and increasing clock speed. Heat becoming an unmanageable problem, Intel Processors > 100 Watts We will not see the dramatic increases in clock speeds in the future. However, the number of gates on a chip will continue to increase. Increasing the number of gates into a tight knot and decreasing the cycle time of the processor Lower Voltage Increase Clock Rate & Transistor Density Core Cache Core Cache Core C1 C2 C3 C4 Cache C1 C2 C3 C4 Cache C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4
  • 11. Increasing chip performance: Intel´s Petaflop chip 80 processors in a die of 300 square mm. Terabytes per second of memory bandwidth Note: The barrier of the Teraflops was obtained by Intel in 1991 using 10.000 Pentium Pro processors contained in more than 85 cabinets occupying 200 square meters  This will be possible in 3 years from now ICPP-2009, September 23rd 2009 Thanks to Intel
  • 12. NVIDIA Fermi Architecture Unified 768KB L2 cache serves all threads GigaThread hardware scheduler assigns Thread Blocks to SMs Wide DRAM interface provides 12 GB/s bandwidth 16 Streaming- Multiprocessors (512 cores) execute Thread Blocks 620 Gigaflops
  • 13. Cell Broadband Engine TM : A Heterogeneous Multi-core Architecture * Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc.
  • 14. Intel/UPC Since 2002 (Roger Espasa, Toni Juan) 40 People Microprocessor Development (Larrabee x86 many core)
  • 15. Top10
  • 16. Looking at the Gordon Bell Prize 1 GFlop/s; 1988; Cray Y-MP; 8 Processors Static finite element analysis 1 TFlop/s; 1998; Cray T3E; 1024 Processors Modeling of metallic magnet atoms, using a variation of the locally self-consistent multiple scattering method. 1 PFlop/s; 2008; Cray XT5; 1.5x10 5 Processors Superconductive materials 1 EFlop/s; ~2018; ?; 1x10 7 Processors (10 9 threads) Jack Dongarra
  • 17. BSC-CNS e iniciativas a nivel internacional: IESP Build an international plan for developing the next generation open source software for scientific high-performance computing Improve the world’s simulation and modeling capability by improving the coordination and development of the HPC software environment
  • 18. 1 EFlop/s “Clean Sheet of Paper” Strawman 4 FPUs+RegFiles/Core (=6 GF @1.5GHz) 1 Chip = 742 Cores (=4.5TF/s) 213MB of L1I&D; 93MB of L2 1 Node = 1 Proc Chip + 16 DRAMs (16GB) 1 Group = 12 Nodes + 12 Routers (=54TF/s) 1 Rack = 32 Groups (=1.7 PF/s) 384 nodes / rack 3.6EB of Disk Storage included 1 System = 583 Racks (=1 EF/s) 166 MILLION cores 680 MILLION FPUs 3.6PB = 0.0036 bytes/flops 68 MW w’aggressive assumptions Sizing done by “balancing” power budgets with achievable capabilities Largely due to Bill Dally Courtesy of Peter Kogge, UND
  • 19. Education for Parallel Programming Multicore-based pacifier I multi-core programming I many-core programming We all massive parallel prog. I games
  • 21. Initial developments Mechanical machines 1854: Boolean algebra by G. Boole 1904: Diode vacuum tube by J.A. Fleming 1938: Boolean Algebra & Electronics Switches, C. Shannon 1946: ENIAC by J.P. Eckert and J. Mauchly 1945: Stored program by J.V. Neuma nn ?????? 1947 : First transistor (Bell Labs) 1949: EDSAC by M. Wilkes 1952: UNIVAC I and IBM 701
  • 22. In 50 Years ... Eniac , Eckert&Mauchly1946 ... 18000 vacuum tubes Pentium III playing DVD, 1998 ... 24 M transistors
  • 23. Technology Trends: Microprocessor Capacity 2X transistors/Chip Every 1.5 years Called “ Moore’s Law ” Moore’s Law Microprocessors have become smaller, denser, and more powerful. Not just processors, bandwidth, storage, etc Gordon Moore (co-founder of Intel) predicted in 1965 that the transistor density of semiconductor chips would double roughly every 18 months.
  • 24.  
  • 25. Computer Architecture Achievements 1951 : Microprogramming (M. Wilkes) 1962 : Virtual Memory (Atlas, Manchester) 1964 : Pipeline (CDC 6600, S. Cray, 10 Mflop/s) 1965 : Cache memory (M. Wilkes) 1975 : Vector processors (S. Cray) 1980 : RISC architecture (IBM, Berkeley, Stanford) 1982 : Multiprocessors with distributed memory 1990 : Superscalar processors : PA-Risc (HP) and RS-6000 (IBM) 1991 : Multiprocessors with distributed shared memory 1994 : SMT (M. Nemirowski, D. Tullsen, S. Eggers) 1994 : Speculative Multiprocessors ( G. Sohi, Winsconsin) 1996 : Value Prediction (J.P.Shen and M.Lipasti, CMU) 2000: Multicore/Manycore Architectures
  • 26.  
  • 27. Virtual Worlds have huge potential beyond Games Commerce & Advertising Corporate Education First Responders Government Health Military Science Community Facilitation Social Change
  • 28. Cray XT5-HE system Over 37,500 quad-core AMD Opteron processors running at 2.6 GHz, 224,162 cores. Power: 6.95 Mwatts 300 terabytes of memory 10 petabytes of disk space. 240 gigabytes per second disk bandwidth Cray's SeaStar2+ interconnect network. Jaguar @ ORNL: 1.75 PF/s Jack Dongarra
  • 29. MareIncognito: Project structure 4 relevant apps: Materials: SIESTA Geophisics imaging: RTM Comp. Mechanics: ALYA Plasma: EUTERPE General kernels Automatic analysis Coarse/fine grain prediction Sampling Clustering Integration with Peekperf Contention, Collectives Overlap computation/communication Slimmed Networks Direct versus indirect networks Contribution to new Cell design Support for programming model Support for load balancing Support for performance tools Issues for future processors Coordinated scheduling: Run time, Process, Job Power efficiency StarSs: CellSs, SMPSs [email_address] OpenMP++ MPI + OpenMP/StarSs Performance analysis tools Processor and node Load balancing Interconnect Applications Programming models Models and prototype
  • 30. Supercomputación y eCiencia 22 grupos de élite M ás de 120 investigadores seniors Más de 300 estudiantes de doctorado BSC-CNS: vertebrador de la investigación en supercomputación en España Application scope “Earth Sciences” Application scope “Astrophysics” Application scope “Engineering” Application scope “Physics” Application scope “Life Sciences” Compilers and tuning of application kernels Programming models and performance tuning tools Architectures and hardware technologies
  • 31. High Performance Computing as key-enabler 1980 1990 2000 2010 2020 2030 Capacity: # of Overnight Loads cases run Available Computational Capacity [Flop/s] CFD-based LOADS & HQ Aero Optimisation & CFD-CSM Full MDO Real time CFD based in flight simulation x10 6 1 Zeta (10 21 ) 1 Peta (10 15 ) 1 Tera (10 12 ) 1 Giga (10 9 ) 1 Exa (10 18 ) 10 2 10 3 10 4 10 5 10 6 LES CFD-based noise simulation RANS Low Speed RANS High Speed HS Design Data Set UnsteadyRANS “ Smart” use of HPC power: Algorithms Data mining knowledge Capability achieved during one night batch Courtesy AIRBUS France
  • 32. Diseño del ITER TOKAMAK (JET, Oxford)
  • 33. Supercomputación, teoría y experimentación Cortesia de IBM
  • 34. Weather, Climate and Earth Sciences: Roadmap 2009 Resolution : 80 Km Memory: ≈110 GB Storage: ≈ 8 TB NEC-SX9 48 vector procs: ≈ 40 days run 2015 Resolution : 20 Km MemSory: ≈ 3,5 TB Storage: ≈ 180 TB High resolution model with complete carbon cycle model Challenges: data viz and post-processing, data discovery, archiving 2020 Resolution : 1 Km Memory: ≈ 4 PB Storage: ≈ 150 PB Higher resolution with global cloud resolving model Challenges: data sharing, transfer memory management, I/O management
  • 35. Education for Parallel Programming Multicore-based pacifier I multi-core programming I many-core programming We all massive parallel prog. I games

Editor's Notes

  1. Access latency for main memory, even using a modern SDRAM with a CAS latency of 2, will typically be around 9 cycles of the **memory system clock** -- the sum of The latency between the FSB and the chipset (Northbridge) (+/- 1 clockcycle) The latency between the chipset and the DRAM (+/- 1 clockcycle) The RAS to CAS latency (2-3 clocks, charging the right row) The CAS latency (2-3 clocks, getting the right column) 1 cycle to transfer the data. The latency to get this data back from the DRAM output buffer to the CPU (via the chipset) (+/- 2 clockcycles) Assuming a typical 133 MHz SDRAM memory system (eg: either PC133 or DDR266/PC2100), and assuming a 1.3 GHz processor, this makes 9*10 = 90 cycles of the CPU clock to access main memory! Yikes, you say! And it gets worse – a 1.6 GHz processor would take it to 108 cycles, a 2.0 GHz processor to 135 cycles, and even if the memory system was increased to 166 MHz (and still stayed CL2), a 3.0 GHz processor would wait a staggering 162 cycles! Caches make the memory system seem almost as fast as the L1 cache, yet as large as main memory. A modern primary (L1) cache has a latency of just two or three **processor cycles**, which is dozens of times faster than accessing main memory, and modern primary caches achieve hit rates of around 90% for most applications. So 90% of the time, accessing memory only takes a couple of cycles. Good overview http://www.pattosoft.com.au/Articles/ModernMicroprocessors/
  2. It is the conclusion of this TTA that, in the very near future (in fact some early examples are clearly in evidence right now), virtual worlds will extend their reach well beyond their current subject matter of on-line fantasy gaming to incorporate all manner of business and commerce. This evolution will quickly encompass many industries and business processes where IBM has traditionally had a significant business interests. In the education industry, it is not at all a stretch to imagine a university physics professor convening a kinematics lecture in a virtual world in which the professor could alter the force of gravity and move large, virtual objects to demonstrate environments on other planets. Closer to our industry, an IBM Industry Solution sales specialist could arrange to meet a client in a virtual world populated by highly realistic (virtual) world venues containing software solutions created by IBM and select business partners. In these virtual sales worlds, clients would interact with the solutions in the same manner as real world users, exploiting all the solution&apos;s functional capacities. For example, a virtual mobile work force solution could be demonstrated from multiple perspectives in the context of real business scenarios - the control center, the mobile vehicle etc. The solution demonstration would totally immerse the client in the solution experience there by creating an unparalleled selling tool. The possibilities are limitless. From top left, clockwise: (1) Worlds of Warcraft: A Tavern. This is just a symbolic representation of commerce &amp; advertising within games. Many people run their own businesses within virtual worlds, trading both virtual and real items for virtual and real currencies. Microsoft’s acquisition of Massive Inc. has also now secured them a huge advertising ecosystem of game development companies, advertising agencies and leading brands, using online video games as another advertising channel for directed and personalized ads and product placement deals. The tavern represents the real-world metaphors that build community within virtual worlds, much like the 18 th century coffee houses lead to the formation of stock exchanges. Incidentally, there is a game advertising summit in San Francisco, June 9 th 2006. (2) Hazmat Hot zone: project based at the Entertainment Technology Center at Carnegie Melon University, is one of the earliest serious game projects and now has several scenarios up-and-running using Unreal-Tournament based graphics and game play. Intended users: fire-department personnel who handle HazMat response. HazMat uses multiplayer gaming technology and augmented communication practices to assist with team-based training vital to HazMat and other disaster response practices. (3) Virtual Iraq: Not only are the army using virtual world simulations for the training of troops and engagement planning, but also for the treatment of Post Traumatic Stress Disorder (PTSD) through the ability to “relive” traumatic events through simulation. ( http://www.washingtonpost.com/ac2/wp-dyn/A58360-2005Mar22?language=printer) (4) Simulation of forest fire disasters and how to combat them. (5) Virtual Acropolis: This is an example of using virtual environments as an educational and research tool for the humanities, in this case ancient history. The use of highly detailed models, created collaboratively by historians and researchers, to model world heritage sites for a variety of uses, including tourism, education, simulation of “what-if” scenarios, etc. imagine teaching history of a famous era or battle by immersing the student in a highly realistic, immersive simulation complete with architecture, artifacts and even populace of the period. These may also help the study of social history and sociological development and evolution via large scale community participation. (6) Food Force: From the United Nations World Food Program (WFP), Food Force is an educational video game telling the story of a hunger crisis on the fictitious island of Sheylan. Comprised of 6 mini-games or “missions”, the game takes young players from an initial crisis assessment through to delivery and distribution of food aid, with each sequential mission addressing a particular aspect of this challenging process. (http://www.food-force.com/) (7) Yourself Fitness: Yourself!Fitness is a complete fitness program on a disc - exercise, diet, motivation, and fitness tracking are all included. Your host is Maya, a dynamically generated digital personality who guides you through all aspects of the application. You need nothing more than an Xbox and a television set to partake. ( http://www.yourselffitness.com/) (8) Pulse!! The virtual clinical learning lab and simulation, for training of first responders in treatments and medical and nursing students. ( http://www.businessweek.com/innovate/content/apr2006/id20060410_051875.htm?chan=innovation_game+room_features). (10) Another picture of Worlds of Warcraft: This is just to illustrate the breadth, diversity and scale of virtual environments. It is easy to take for granted that the fact that this huge architectural vista and the tavern above are all parts of a single virtual world that is WoW, is a challenge to the rendering engine, to deal with a broad spectrum of conditions. Why is this important? It means that the same middleware engine can be used to a broad variety of simulation environments and applications these days, rather than purpose built or specialized simulations for specific scenarios, and are configurable through XML &amp; scripting mechanisms. (centre) Google Earth: Now being offered as Enterprise Services for a variety of applications including real-estate, architecture &amp; engineering, insurance, media. Google’s provision of 3D modelling tools and open repository for free is a significant step in them making Google Earth a platform for application development using it as a visualization engine and MySpace of the future. NEED FOR STANDARDS: Multiple Virtual Worlds Interconnected &amp; Interdependent Independently operated Open standard interfaces, to allow: Avatar portability Property portability Security Metering, Billing, Separations, Settlements Distributed problem determination Distributed systems management
  3. (Please note - this slide includes 2 animation steps) An exciting question to ask, is where is this research heading? In this slide you can see what is probably a familiar chart depicting the progress that has been made in supercomputing since the early 90s. (At each time point, the green line shows the 500th fast supercomputer, the dark blue line the fastest supercomputer, and the light blue line the summed power of the top 500 machines). These lines show a nice trend, which we’ve extrapolated out 10 years. [ANIMATE SLIDE] The IBM team’s latest simulation results fall here on the graph. These latest results represent a model about 4 and a half percent of the scale of the cerebral cortex, which was run at 1/83 of real time. The machine used provided 144 TB of memory and 0.5 PFLop/s. [ANIMATE SLIDE] Turning to the future, you can see that running human scale cortical simulations will require 4 PB of memory and to run these simulations in real time will require over 1 EFLop/s. If the current trends in supercomputing continue, however, the IBM team believes they will have the ability to perform such simulations in the not too distant future.