Skip to main content

All Questions

148 votes
8 answers
18k views

Calculus of variations -- how does it make sense to vary the position and the velocity independently?

In the calculus of variations, particularly Lagrangian mechanics, people often say we vary the position and the velocity independently. But velocity is the derivative of position, so how can you treat ...
grizzly adam's user avatar
  • 2,155
57 votes
7 answers
9k views

Why isn't the Euler-Lagrange equation trivial?

The Euler-Lagrange equation gives the equations of motion of a system with Lagrangian $L$. Let $q^\alpha$ represent the generalized coordinates of a configuration manifold, $t$ represent time. The ...
Trevor Kafka's user avatar
  • 1,826
25 votes
2 answers
2k views

Lagrangian Mechanics - Commutativity Rule $\frac{d}{dt}\delta q=\delta \frac{dq}{dt} $

I am reading about Lagrangian mechanics. At some point the difference between the temporal derivative of a variation and variation of the temporal derivative is discussed. The fact that the two are ...
user37155's user avatar
  • 281
7 votes
3 answers
1k views

In equation (3) from lecture 7 in Leonard Susskind’s ‘Classical Mechanics’, should the derivatives be partial?

Here are the equations. ($V$ represents a potential function and $p$ represents momentum.) $$V(q_1,q_2) = V(aq_1 - bq_2)$$ $$\dot{p}_1 = -aV'(aq_1 - bq_2)$$ $$\dot{p}_2 = +bV'(aq_1 - bq_2)$$ Should ...
Bradley Peacock's user avatar
4 votes
4 answers
260 views

Variation of a function

I'm studying calculus of variations and Lagrangian mechanics and i don't understand something about the variational operator Let's say for example that i got a Lagrangian $L [x(t), \dot{x}(t), t] $ ...
Tomás's user avatar
  • 309
4 votes
2 answers
1k views

Trouble with Landau & Lifshitz's expansion of the Lagrangian with respect to $\epsilon$ and $v$ [duplicate]

Hello I have a quick question on what I have been reading in Landau & Lifshitz's book on classical mechanics. I am in the very beginning of the book and I am having trouble with his derivation on ...
JSanchez's user avatar
4 votes
1 answer
2k views

How do total time derivatives of partial derivatives of functions work?

Say im trying to prove $\frac{\partial \dot{T}}{\partial \dot{q}^i} - 2\frac{\partial {T}}{\partial {q^i}} = - \frac{\partial {V}}{\partial {q^i}}$ from the Lagrangian equation: $L = T - V$, and the ...
dimes's user avatar
  • 75
3 votes
2 answers
148 views

How to prove that $ \delta \frac{dq_i}{dt} = \frac{d \delta q_i}{dt} $? [duplicate]

During the proof of least action principle my prof used the equation $ \delta \frac{dx}{dt} = \frac{d \delta x}{dt} $. We were not proved this equality. I was curious to know why this is true so I ...
QuantumOscillator's user avatar
2 votes
6 answers
239 views

Lagrangian - How can we differentiate with respect to time if $v$ not a function of time?

In the Lagrangian itself, we know that $v$ and $q$ don't depend on $t$ (i.e - they are not functions of $t$ - i.e., $L(q,v,t)$ is a state function.) Imagine $L = \frac{1}{2}mv^2 - mgq$ Euler-Lagrange ...
Giorgi's user avatar
  • 525
2 votes
1 answer
615 views

Proof that the Euler-Lagrange equations hold in any set of coordinates if they hold in one

This is a question about a specific proof presented in the book Introduction to Classical Mechanics by David Morin. I have highlighted the relevant portion in the picture below. In the remark, he ...
user avatar
2 votes
2 answers
188 views

Take derivative to a cross product of two vectors with respect to the position vector [closed]

I'm doing classical mechanics about Lagrange formulation and confused about something about vector differentiation.The Lagrangian is given: $$\mathcal{L}=\frac{m}{2}(\dot{\vec{R}}+\vec{\Omega} \times \...
Bruce's user avatar
  • 103
2 votes
1 answer
225 views

Is Goldstein's matrix formalism to Hamiltonian mechanics necessary? [closed]

I am trying to see whether the matrix formalism of the Hamiltonian formalism (used in Goldstein's textbook) is truly necessary to solve problem in this framework. It appears so based on the problem I'...
Lopey Tall's user avatar
  • 1,031
2 votes
1 answer
100 views

Confusion regarding the time derivative term in Lagrange's equation

I am solving a pendulum attached to a cart problem. Without going into unnecessary details, the generalised coordinates are chosen to be $x$ and $\theta$. The kinetic energy of the system contains a ...
ModCon's user avatar
  • 192
2 votes
1 answer
3k views

Lagrange equations in a conservative system, understanding $\nabla_i$

For a system of multiple particles with conservative forces: $\mathbf{F}_i = - \nabla_i V$, with $V \equiv V(\mathbf{r}_1,\dots,\mathbf{r}_N)$ the potential in function of the position of the $N$ ...
Zachary's user avatar
  • 265
2 votes
4 answers
1k views

The definition of the hamiltonian in lagrangian mechanics

So going through the "Analytical Mechanics by Hand and Finch". In section 1.10 of the book, the Hamiltonian $H$ is defined as: $$H = \sum_k{\dot{q_k}\frac{\partial L}{\partial \dot{q_k}} -L}.\tag{1.65}...
user avatar

15 30 50 per page