3
$\begingroup$

I don't know how to work with the 'reversed' dot product operator,

$$v\cdot \nabla$$

I arrived to expressions like this trough doing some calculus, and I don't know how to continue with the calculus because this operators that are not commutative,

$$\int \left( (E\cdot \nabla) E +c^2 (B\cdot \nabla ) B \right)d^3r \stackrel{\text{?}}{=}0$$

That needs to be zero for a set of charged particles, but I don't know how to use the operators and any properties that they have.

$\endgroup$
4
  • 5
    $\begingroup$ Working in components could help - it is tedious, but one can understand a great deal. $\endgroup$
    – Roger V.
    Commented Dec 16, 2021 at 12:34
  • 3
    $\begingroup$ $(A\cdot B)\cdot C$ does not make sense. $A\cdot B$ is a product of two vectors giving a number. You can't take the dot product of a number with a vector. Maybe you mean $(A\cdot B) C$? $\endgroup$ Commented Dec 16, 2021 at 12:46
  • $\begingroup$ Yes, is a normal product, I'ts an error, I will correct it, thanks $\endgroup$
    – Euler
    Commented Dec 16, 2021 at 12:52
  • 1
    $\begingroup$ I'm not sure what you mean by "that needs to be zero for a set of charged particles." Is this en route to deriving the Poynting theorem? Some more context would be helpful. As it stands, $\vec v \cdot \nabla = v_x\partial_x + v_y\partial_y + v_z\partial_z$ is basically what it looks like. $\endgroup$
    – J. Murray
    Commented Dec 16, 2021 at 13:16

1 Answer 1

4
$\begingroup$

Hint :

\begin{align} \overbrace{ \begin{bmatrix} \mathrm a_1\dfrac{\partial \rm b_1}{\partial x_1}\boldsymbol{+}\mathrm a_2\dfrac{\partial \rm b_1}{\partial x_2}\boldsymbol{+}\mathrm a_3\dfrac{\partial \rm b_1}{\partial x_3}\vphantom{\dfrac{\tfrac{f}{g}}{\tfrac{f}{g}}}\\ \mathrm a_1\dfrac{\partial \rm b_2}{\partial x_1}\boldsymbol{+}\mathrm a_2\dfrac{\partial \rm b_2}{\partial x_2}\boldsymbol{+}\mathrm a_3\dfrac{\partial \rm b_2}{\partial x_3}\vphantom{\dfrac{\tfrac{f}{g}}{\tfrac{f}{g}}}\\ \mathrm a_1\dfrac{\partial \rm b_3}{\partial x_1}\boldsymbol{+}\mathrm a_2\dfrac{\partial \rm b_3}{\partial x_2}\boldsymbol{+}\mathrm a_3\dfrac{\partial \rm b_3}{\partial x_3}\vphantom{\dfrac{\tfrac{f}{g}}{\tfrac{f}{g}}} \end{bmatrix}}^{\left(\mathbf{a}\boldsymbol{\cdot}\boldsymbol{\nabla}\right)\mathbf{b}} &\boldsymbol{=} \begin{bmatrix} \mathbf{a}\boldsymbol{\cdot}\boldsymbol{\nabla}\mathrm b_1\vphantom{\dfrac{\tfrac{f}{g}}{\tfrac{f}{g}}}\\ \mathbf{a}\boldsymbol{\cdot}\boldsymbol{\nabla}\mathrm b_2\vphantom{\dfrac{\tfrac{f}{g}}{\tfrac{f}{g}}}\\ \mathbf{a}\boldsymbol{\cdot}\boldsymbol{\nabla}\mathrm b_3\vphantom{\dfrac{\tfrac{f}{g}}{\tfrac{f}{g}}} \end{bmatrix} \boldsymbol{=} \overbrace{ \begin{pmatrix} \mathrm a_1\dfrac{\partial \hphantom{\rm b_1}}{\partial x_1}\boldsymbol{+}\mathrm a_2\dfrac{\partial \hphantom{\rm b_1}}{\partial x_2}\boldsymbol{+}\mathrm a_3\dfrac{\partial \hphantom{\rm b_1}}{\partial x_3}\vphantom{\dfrac{\tfrac{f}{g}}{\tfrac{f}{g}}} \end{pmatrix}}^{\left(\mathbf{a}\boldsymbol{\cdot}\boldsymbol{\nabla}\right)} \overbrace{ \begin{bmatrix} \mathrm b_1\vphantom{\dfrac{\tfrac{f}{g}}{\tfrac{f}{g}}}\\ \mathrm b_2\vphantom{\dfrac{\tfrac{f}{g}}{\tfrac{f}{g}}}\\ \mathrm b_3\vphantom{\dfrac{\tfrac{f}{g}}{\tfrac{f}{g}}} \end{bmatrix}}^{\mathbf{b}} \label{vecform-12}\\ \overbrace{ \begin{bmatrix} \mathrm b_1\dfrac{\partial \rm a_1}{\partial x_1}\boldsymbol{+}\mathrm b_2\dfrac{\partial \rm a_1}{\partial x_2}\boldsymbol{+}\mathrm b_3\dfrac{\partial \rm a_1}{\partial x_3}\vphantom{\dfrac{\tfrac{f}{g}}{\tfrac{f}{g}}}\\ \mathrm b_1\dfrac{\partial \rm a_2}{\partial x_1}\boldsymbol{+}\mathrm b_2\dfrac{\partial \rm a_2}{\partial x_2}\boldsymbol{+}\mathrm b_3\dfrac{\partial \rm a_2}{\partial x_3}\vphantom{\dfrac{\tfrac{f}{g}}{\tfrac{f}{g}}}\\ \mathrm b_1\dfrac{\partial \rm a_3}{\partial x_1}\boldsymbol{+}\mathrm b_2\dfrac{\partial \rm a_3}{\partial x_2}\boldsymbol{+}\mathrm b_3\dfrac{\partial \rm a_3}{\partial x_3}\vphantom{\dfrac{\tfrac{f}{g}}{\tfrac{f}{g}}} \end{bmatrix}}^{\left(\mathbf{b}\boldsymbol{\cdot}\boldsymbol{\nabla}\right)\mathbf{a}} &\boldsymbol{=} \begin{bmatrix} \mathbf{b}\boldsymbol{\cdot}\boldsymbol{\nabla}\mathrm a_1\vphantom{\dfrac{\tfrac{f}{g}}{\tfrac{f}{g}}}\\ \mathbf{b}\boldsymbol{\cdot}\boldsymbol{\nabla}\mathrm a_2\vphantom{\dfrac{\tfrac{f}{g}}{\tfrac{f}{g}}}\\ \mathbf{b}\boldsymbol{\cdot}\boldsymbol{\nabla}\mathrm a_3\vphantom{\dfrac{\tfrac{f}{g}}{\tfrac{f}{g}}} \end{bmatrix} \boldsymbol{=} \overbrace{ \begin{pmatrix} \mathrm b_1\dfrac{\partial \hphantom{\rm b_1}}{\partial x_1}\boldsymbol{+}\mathrm b_2\dfrac{\partial \hphantom{\rm b_1}}{\partial x_2}\boldsymbol{+}\mathrm b_3\dfrac{\partial \hphantom{\rm b_1}}{\partial x_3}\vphantom{\dfrac{\tfrac{f}{g}}{\tfrac{f}{g}}} \end{pmatrix}}^{\left(\mathbf{b}\boldsymbol{\cdot}\boldsymbol{\nabla}\right)} \overbrace{ \begin{bmatrix} \mathrm a_1\vphantom{\dfrac{\tfrac{f}{g}}{\tfrac{f}{g}}}\\ \mathrm a_2\vphantom{\dfrac{\tfrac{f}{g}}{\tfrac{f}{g}}}\\ \mathrm a_3\vphantom{\dfrac{\tfrac{f}{g}}{\tfrac{f}{g}}} \end{bmatrix}}^{\mathbf{a}} \label{vecform-13} \end{align}

$\endgroup$

Not the answer you're looking for? Browse other questions tagged or ask your own question.