Skip to main content
Search type Search syntax
Tags [tag]
Exact "words here"
Author user:1234
user:me (yours)
Score score:3 (3+)
score:0 (none)
Answers answers:3 (3+)
answers:0 (none)
isaccepted:yes
hasaccepted:no
inquestion:1234
Views views:250
Code code:"if (foo != bar)"
Sections title:apples
body:"apples oranges"
URL url:"*.example.com"
Saves in:saves
Status closed:yes
duplicate:no
migrated:no
wiki:no
Types is:question
is:answer
Exclude -[tag]
-apples
For more details on advanced search visit our help page
Results tagged with
Search options not deleted user 543769

For basic questions about limits, continuity, derivatives, differentiation, integrals, and their applications, mainly of one-variable functions.

3 votes

$\int_0^1 \frac{dr}{r\log^n(1+\frac{1}{r})}< \infty$ if $n>1$

Write $\int_0^1=\int_0^{1/2}+\int_{1/2}^1$ and use $$\int_0^{1/2}\frac{dr}{r\log^n(1+1/r)}<\int_0^{1/2}\frac{dr}{r\log^n(1/r)}=\frac{\log^{1-n}2}{n-1}$$ (the remaining integral is clearly finite).
metamorphy's user avatar
  • 40.1k
1 vote

If $\lim_{n\to\infty}\frac{a_n}{n^\alpha}=1,\alpha>0$, find $\lim_{n\to\infty}\frac{1}{n^{1+...

Let $b_n=\displaystyle\sum_{k=1}^n k^\alpha$ and $c_n=\displaystyle\sum_{k=1}^n a_k$. Then (the "Riemann sum" argument) $$\lim_{n\to\infty}\frac{b_n}{n^{1+\alpha}}=\lim_{n\to\infty}\frac1n\sum_{k=1}^n …
metamorphy's user avatar
  • 40.1k
0 votes

Expanding formula in partial fractions

Hint: $$(x-a)^{-k}(x-b)^{-l}=\sum_{j=1}^{k}A_j(x-a)^{-j}+\sum_{j=1}^{l}B_j(x-b)^{-j},$$ where the "$A_j$" part can be obtained from the power series of $(x-b)^{-l}$ around $x=a$: $$(x-b)^{-l}=(a-b)^{- …
metamorphy's user avatar
  • 40.1k
1 vote
Accepted

Extreme limit of sum of Faddeeva function

$$ {\rm W}(iz)={\rm e}^{z^2}\frac{2}{\sqrt\pi}\int_z^\infty{\rm e}^{-t^2}\,{\rm d}t\underset{t=z+x}{\phantom{\big[}=\phantom{\big]}}\frac{2}{\sqrt\pi}\int_0^\infty{\rm e}^{-x^2-2zx}\,{\rm d}x, $$ $$ \ …
metamorphy's user avatar
  • 40.1k
3 votes
Accepted

Evaluate $\lim\limits_{n \to \infty}\sum\limits_{i=1}^n\frac{1-\cos \frac{\pi}{\sqrt{n}}}{1+...

The limit doesn't exist (i.e. it is infinite). For $1\leqslant k\leqslant m_n:=\lfloor\sqrt{n/8}\rfloor$ (and $n$ large enough), let $$i_k:=\lfloor(2k-1)\sqrt{2n}\rfloor=(2k-1)\sqrt{2n}-\epsilon_k.$$ …
metamorphy's user avatar
  • 40.1k
4 votes
Accepted

Can I use L'Hopital's to show $\lim_{x\to1^-}(1-x)[\frac{d}{dx}(1-x)\sum_{n=1}^\infty a_nx^n...

My "favourite" counterexample works again. Consider $a_n=(-1)^k$ for $2^k\leqslant n<2^{k+1}$, $k\geqslant 0$. Then, for $f(x):=\sum_{n=1}^\infty a_n x^n$, we get $g(x):=(1-x)f(x)=x+2\sum_{k=1}^\infty …
metamorphy's user avatar
  • 40.1k
0 votes

Integration included with square-roots

Just an idea (not a complete answer) is to use $\Im\sqrt{x+iy}=\sqrt{(\sqrt{x^2+y^2}-x)/2}$ for real $x,y\geqslant 0$ (and the principal branch of the square root on the left). So the substitution $x= …
metamorphy's user avatar
  • 40.1k
4 votes
Accepted

The integral $\int_0^1 dx_1 \cdots dx_n \frac{1}{[(x_1+ \cdots +x_n)(1-x_1- \cdots -x_n)]^\a...

I'm not completely sure what the integration domain is. If it is really supposed that all variables are ranging from $0$ to $1$, then $1-x_1-\ldots-x_n$ gets negative when all of $x_1,\ldots,x_n$ are …
metamorphy's user avatar
  • 40.1k
0 votes

Does the $\sum_{k}$ remain after differentiating $log(\frac{\sum_{k}W_{ik}H_{kj}}{const.})$ ...

Mixed indices confuse. $\displaystyle\frac{\partial}{\partial H_{uv}}\sum_{i,j}\log\frac{\sum_k W_{ik} H_{kj}}{\text{const.}} = \sum_i\frac{W_{iu}}{\sum_k W_{ik} H_{kv}}$.
metamorphy's user avatar
  • 40.1k
15 votes
Accepted

Maclaurin series of $1- \cos^{2/3} x$ has all coefficients positive

(A proof, not very "natural" though.) $f(x)=1-\cos^{2/3}x$ satisfies $xf''(x)=g(x)f'(x)$, where $$g(x)=x\cot x+\frac{x}3\tan x=1+\sum_{n=1}^\infty g_n x^n$$ with $g_n=0$ for odd $n$, and $3g_{2n}=(-1) …
metamorphy's user avatar
  • 40.1k
4 votes

$\lim_{n\to\infty}\prod_{k=1}^n (\beta+k/n)$

Use Euler–Maclaurin summation formula with remainder. For any $\beta>0$ \begin{align} \sum_{k=1}^n\log(\beta+k/n)&=\int_0^n\log(\beta+x/n)\,dx \\&+\frac{\log(\beta+1)-\log\beta}2-\frac1{12n\beta(\beta …
metamorphy's user avatar
  • 40.1k
2 votes
Accepted

$\int_{0}^{2\pi}\frac{e^{ir\left ( \cos \phi +\sin \phi \right )}}{\cos^2\phi+a^2\sin^2\phi}...

I doubt there's a simple closed form. What I get (easily) is a series using Bessel functions. Taking the following known generating function $$\sum_{n\in\mathbb{Z}}J_n(z)t^n=\exp\left[\frac{z}{2}\left …
metamorphy's user avatar
  • 40.1k
2 votes
Accepted

Polylog integral $\int_{0}^{1}\frac{x\log x\operatorname{Li}_2(x)}{x^2+1}dx$

Suppose $\sum_{n=1}^\infty|a_n|$ converges. Then $\left(\sum_{n=1}^\infty a_n\right)^2=\sum_{n=1}^\infty a_n^2+2\sum_{n=1}^\infty a_n\sum_{k=1}^\infty a_{n+k}$. Replacing $a_n$ with $(-1)^n a_n$ and r …
metamorphy's user avatar
  • 40.1k
0 votes

Does $\int_{-\infty }^{\ln \pi} \sqrt{\sin e^t} \, \rm{d}t$ have closed form?

Another not-an-answer regarding the computational matter. As commented, $$I=\int_0^\pi\frac{\sqrt{\sin x}}{x}\,dx=\int_0^\pi\frac{\sqrt{\sin x}}{\pi-x}\,dx =\frac\pi2\int_0^\pi\frac{\sqrt{\sin x}}{x(\ …
metamorphy's user avatar
  • 40.1k
3 votes
Accepted

Proving $\frac12k+\sum_{n=1}^{k-1}(k-n)\cos(nx)=\frac{1-\cos(kx)}{4\sin^2(x/2)}$ for $k\geq2...

\begin{align*} 2u_k(x)\sin\frac{x}2&=k\sin\frac{x}2+\sum_{n=1}^{k-1}(k-n)\left[\sin\left(n+\frac12\right)x-\sin\left(n-\frac12\right)x\right] \\&=\sum_{n=\color{red}{0}}^{k-1}(k-n)\sin\left(n+\frac12\ …
metamorphy's user avatar
  • 40.1k

1
2 3 4 5
11
15 30 50 per page