Skip to main content

All Questions

2 votes
3 answers
187 views

Compute the integral in a closed form : $\int_0^{1}\operatorname{Li}_2(1-x)dx$

How I can find the closed form of the following integration : $I=\int_0^{1}\operatorname{Li}_2(1-x)dx$ $J=\int_0^{1}\operatorname{Li}_2(1-x)\operatorname{Li}_2(1-\frac{1}{x})dx$ $K=\int_0^{1}\ln(x)...
Roze flowers's user avatar
1 vote
0 answers
119 views

Generalized form of this Harmonic Number series $\sum_{n=1}^{\infty} \frac{{H_n}x^{n+1}}{(n+1)^3}$

i've tried to Evaluate $$\int_{0}^{\frac{\pi}{6}}x\ln^2(2\sin(x))dx$$ without using Contour integral first i changed $2\sin(x)$ into polar form ,and i got $$\int_{0}^{\frac{\pi}{6}}x\ln^2(2\sin(x))dx ...
Unik Sillavich's user avatar
6 votes
1 answer
249 views

On the alternating Euler sum $\sum_{n = 1}^\infty \frac{(-1)^n H_n H_{2n}}{2n + 1}$

In trying to evaluate the integral given here, in a rather circuitous way, I stumbled upon the following alternating Euler sum $$\sum_{n = 1}^\infty \frac{(-1)^n H_n H_{2n}}{2n + 1} = \frac{3 \pi}{...
omegadot's user avatar
  • 11.8k
8 votes
2 answers
1k views

Evaluate $\int_0^1\frac{\ln x\ln(1-x)}{1+x^2}\ dx$

How to prove $\ \displaystyle\int_0^1\frac{\ln x\ln(1-x)}{1+x^2}\ dx=\frac{3\pi^3}{64}+\frac{\pi}{16}\ln^22-\Im\operatorname{Li}_3(1+i)$ Where $\ \displaystyle\operatorname{Li}_3(x)=\sum_{n=1}^\infty\...
Ali Shadhar's user avatar
  • 25.8k
5 votes
2 answers
471 views

Integral $\ 4\int_0^1\frac{\chi_2(x)\operatorname{Li}_2(x)}{x}\ dx+\int_0^1\frac{\log(1-x)\log^2(x)\log(1+x)}{x}\ dx$

How to prove that $$4\int_0^1\frac{\chi_2(x)\operatorname{Li}_2(x)}{x}\ dx+\int_0^1\frac{\log(1-x)\log^2(x)\log(1+x)}{x}\ dx=\frac{29}4\zeta(2)\zeta(3)-\frac{91}8\zeta(5)$$ Where $\chi_2(x)=\sum_{...
Ali Shadhar's user avatar
  • 25.8k
15 votes
3 answers
956 views

Compute $\int_0^\infty \frac{\operatorname{Li}_3(x)}{1+x^2}\ dx$

How to evaluate $$\int_0^\infty \frac{\operatorname{Li}_3(x)}{1+x^2}\ dx\ ?$$ where $\displaystyle\operatorname{Li}_3(x)=\sum_{n=1}^\infty\frac{x^n}{n^3}$ , $|x|\leq1$ I came across this integral ...
Ali Shadhar's user avatar
  • 25.8k
4 votes
2 answers
624 views

challenging sum $\sum_{k=1}^\infty\frac{H_k^{(2)}}{(2k+1)^2}$

How to prove that \begin{align} \sum_{k=1}^\infty\frac{H_k^{(2)}}{(2k+1)^2}=\frac13\ln^42-2\ln^22\zeta(2)+7\ln2\zeta(3)-\frac{121}{16}\zeta(4)+8\operatorname{Li}_4\left(\frac12\right) \end{align} ...
Ali Shadhar's user avatar
  • 25.8k
4 votes
2 answers
503 views

Sum $\sum\limits_{n=1}^\infty\frac{H_n^2}{n^22^n}$

Where $ H_n$ is the harmonic number, $\ \displaystyle H_n=1+\frac12+\frac13+...+\frac1n$. I am going to present my solution as I need it as a reference. Other approaches are appreciated. here is ...
Ali Shadhar's user avatar
  • 25.8k
6 votes
2 answers
529 views

$\sum_{n=1}^\infty\frac{H_n}{n}\left(\zeta(2)-H_{2n}^{(2)}\right)$

This problem was proposed by Cornel and he showed that $$S=\sum_{n=1}^\infty\frac{H_n}{n}\left(\zeta(2)-H_{2n}^{(2)}\right)=\frac13\ln^42-\frac12\ln^22\zeta(2)+\frac72\ln2\zeta(3)-\frac{21}4\zeta(4)+...
Ali Shadhar's user avatar
  • 25.8k
1 vote
1 answer
549 views

Find the closed form of $\quad\sum_{n=1}^\infty\frac{(-1)^nH_n^{(3)}}{n^2}$

where $H_n$ is the harmonic number and can be defined as: $H_n=1+\frac12+\frac13+...+\frac1n$ $H_n^{(3)}=1+\frac1{2^3}+\frac1{3^3}+...+\frac1{n^3}$ I managed to prove $\quad\displaystyle\sum_{n=1}^...
Ali Shadhar's user avatar
  • 25.8k
11 votes
2 answers
927 views

Two powerful alternating sums $\sum_{n=1}^\infty\frac{(-1)^nH_nH_n^{(2)}}{n^2}$ and $\sum_{n=1}^\infty\frac{(-1)^nH_n^3}{n^2}$

where $H_n$ is the harmonic number and can be defined as: $H_n=1+\frac12+\frac13+...+\frac1n$ $H_n^{(2)}=1+\frac1{2^2}+\frac1{3^2}+...+\frac1{n^2}$ these two sums are already solved by Cornel using ...
Ali Shadhar's user avatar
  • 25.8k
1 vote
1 answer
159 views

Closed form for $f(z,a)=\sum_{n=1}^\infty \frac{H_n}{n^a}z^n$?

So I have been working with some power series involving the Harmonic numbers. I have been able to evaluate the first couple of sums as $$f(z,0)=\sum_{n=1}^\infty H_n z^n=\sum_{n=1}^\infty z^n\int_0^1 \...
aleden's user avatar
  • 4,027
6 votes
1 answer
308 views

On generalizing the harmonic sum $\sum_{n=1}^{\infty}\frac{H_n}{n^k}z^n = S_{k-1,2}(1)+\zeta(k+1)$ when $z=1$?

Given the nth harmonic number $ H_n = \sum_{j=1}^{n} \frac{1}{j}$. In this post it asks for the evaluation, $$\sum_{n=1}^{\infty}\frac{H_n}{n^3}=\tfrac{5}{4}\zeta(4)$$ while this post and this ...
Tito Piezas III's user avatar
3 votes
5 answers
290 views

Compute in closed form $\int_0^1\frac{\arctan{ax}}{\sqrt{1-x^{2}}}dx$

I am trying to find closed form for this integral: $$I(a)=\int_0^1\frac{\arctan{ax}}{\sqrt{1-x^{2}}}dx$$ Where $a>0$. My try: Let: $$I(a)=\int_0^1\frac{\arctan{ax}}{\sqrt{1-x^{2}}}dx$$ Then: $$\...
user avatar
6 votes
3 answers
691 views

How to find $\sum_{n=1}^{\infty}\frac{H_nH_{2n}}{n^2}$ using real analysis and in an elegant way?

I have already evaluated this sum: \begin{equation*} \sum_{n=1}^{\infty}\frac{H_nH_{2n}}{n^2}=4\operatorname{Li_4}\left( \frac12\right)+\frac{13}{8}\zeta(4)+\frac72\ln2\zeta(3)-\ln^22\zeta(2)+\frac16\...
Ali Shadhar's user avatar
  • 25.8k

15 30 50 per page
1
3 4
5
6 7