Skip to main content

All Questions

0 votes
0 answers
51 views

Divisors of $x^2-1$ in Brocard's Problem

In this post, I was curious if the divisor bound could be improved for the product of two consecutive even numbers. It seems most likely it cannot by much. How could the upper bound of $\sigma_0(x^2 - ...
PiMaster's user avatar
2 votes
1 answer
69 views

Generalized "perfect numbers" using different n,k values of divisorSum[n, k]

Using the divisor_sigma[n, k] function from the python sympy library where n is the positive integer which is having its divisors added and k is the power each factor is raised to, I was looking for ...
unnamed's user avatar
  • 31
0 votes
0 answers
44 views

Why are their common ratios of integers to the sums of their proper divisors?

I was playing around on Desmos with a function that computed the sums of proper divisors of an integer and found an interesting pattern regarding the "slopes" of the graph: Graph of integers ...
IvesM's user avatar
  • 9
2 votes
1 answer
97 views

these pde's and the Dirichlet divsor problem

I noticed that $$t^2 \frac{\partial^3}{\partial t^3}\Delta_t(s)+s^2 \frac{\partial}{\partial s} \Delta_t(s)=0 $$ is satisfied by $$\Delta_t(s)= - \sqrt{\frac{t}{s}}Y_1{(4\pi\sqrt{ts})}+ \sqrt{\frac{t}{...
zeta space's user avatar
2 votes
0 answers
139 views

Divisors sum and Bessel Function related sums

Discovered the following relation: $$\sum _{k=1}^{\infty } \sigma (k) \left(K_2\left(4 \pi \sqrt{k+y} \sqrt{y}\right)-K_0\left(4 \pi \sqrt{k+y} \sqrt{y}\right)\right)=\frac{\pi K_1(4 \pi y)-3 K_0(...
Gevorg Hmayakyan's user avatar
1 vote
1 answer
103 views

Inverse Mellin transform of $\Delta(t):=\sum_{s=1}^\infty d(s)\sqrt{\frac{t}{s}}M_1(4\pi \sqrt{ts})$

Define $$ \Delta(t):=\sum_{s=1}^\infty d(s)\sqrt{\frac{t}{s}}M_1(4\pi \sqrt{ts}) $$ where $M_1(z)=-Y_1{(z)}-\frac{2}{\pi}K_1(z)$ and $d(s)$ is the divisor function. What is the inverse Mellin ...
zeta space's user avatar
3 votes
1 answer
104 views

Approximation of $\sigma(n)$ sum.

Investigating: $$\epsilon(n)=\frac{(\pi -3) e^{2 \pi n}}{24 \pi }-\sum _{k=1}^n \sigma(k) e^{2 \pi (n-k)}$$ where $\sigma(n)$ is a divisors sum of $n$. Using long calculations (can not share here ...
Gevorg Hmayakyan's user avatar
0 votes
1 answer
66 views

Asymptotic for $\sum_{d\mid N}\frac{d^{2}}{\sigma\left(d\right)}$ [closed]

Let $N\in\mathbb{N}$. I'm looking for an asymptotic formula for $\sum_{d\mid N}\frac{d^{2}}{\sigma\left(d\right)}$ as $N\rightarrow\infty$. I tried to use known asymptotic formulas for similar ...
user23571119's user avatar
6 votes
1 answer
227 views

Divisors Sum Related Interesting Approximate Relation

Working on Divisors Sum Efficient calulcation topic. Accidentaly discovered one interesting relation which is accurate up to $10^{17}$ order. $$\sum_{i=1}^{\infty}{\frac{\sigma(i)}{e^{i}}}\approx\frac{...
Gevorg Hmayakyan's user avatar
2 votes
0 answers
62 views

patterns in the abundancy index of integers

Let $\sigma(n)$ be the sum of all divisors (including 1 and $n$) of $n$, and define the abundancy index of $n$ as $I(n) = \sigma(n)/n $. For example: $I(6)= \frac{1+2+3+6}{6} = 1/1+1/2 +1/3 +1/6 = 2$. ...
AndroidBeginner's user avatar
2 votes
1 answer
62 views

On the "efficiency" of digit-sum divisibility tricks in other bases (or about the growth rate of the number of divisors function).

Out of the different divisibility tricks there's a really simple rule that works for more than one divisor: The digit-sum. Specifically, if the sum of the digits of a number is a multiple of $1,3$ or $...
Robert Lee's user avatar
  • 7,273
2 votes
1 answer
48 views

Solutions of equations of form $\tau(n+a_i)=\tau(x+a_i)$ where $\tau$ is the number of divisors function and $a_i$ is a diverging series

Consider the function $$\tau(n)=\sum_{d|n}1$$ which gives the number of divisors of a number. The question is: How much information does $\tau(n)$ contain about $n$? The answer is obviously: not very ...
xyz1234's user avatar
  • 103
2 votes
1 answer
55 views

The number of positive divisors of a number that are not present in another number.

How many positive divisors are there of $30^{2024}$ which are not divisors of $20^{2021}$? I have tried many ways to try to get a pattern for this problem but I can't. I know that $30$ has $8$ ...
Ahmed Amir's user avatar
0 votes
1 answer
92 views

Growth rate of sum of divisors cubed [closed]

I a trying to find a result similar to: $$\limsup_{n \to \infty} \frac{\sigma_1(n)}{n \log \log (n)} = e^\gamma$$ (where $\sigma_1$ is the sum of divisors function) but regarding the growth rate of $\...
user3141592's user avatar
  • 1,919
5 votes
2 answers
262 views

Determine all positive integers $n$ such that: $n+d(n)+d(d(n))+\dotsb=2023$.

For a positive integer number $n>1$, we say that $d(n)$ is its superdivisor if $d(n)$ is the largest divisor of $n$ such that $d(n)<n$. Additionally, we define $d(0)=d(1)=0$. Determine all ...
Kokos's user avatar
  • 418

15 30 50 per page
1
2 3 4 5
25