Skip to main content

All Questions

Tagged with
6 votes
4 answers
241 views

Evaluate $\int_{0}^{1}\{1/x\}^2\,dx$

Evaluate $$\displaystyle{\int_{0}^{1}\{1/x\}^2\,dx}$$ Where {•} is fractional part My work $$\displaystyle{\int\limits_0^1 {{{\left\{ {\frac{1}{x}} \right\}}^2}dx} = \sum\limits_{n = 1}^\infty {\...
user avatar
2 votes
1 answer
78 views

$\frac{(1+x)^n}{(1-x)^3}=a_{0}+a_{1}x+a_{2}x^2+\cdots$ show that ${a_{0}+\cdots+a_{n-1}=\frac{n(n+2)(n+7)2^{n-4}}{3}}$

$$\displaystyle{\frac{(1+x)^n}{(1-x)^3}=a_{0}+a_{1}x+a_{2}x^2+\cdots}$$, show that $$\displaystyle{a_{0}+\cdots+a_{n-1}=\frac{n(n+2)(n+7)2^{n-4}}{3}}$$ When i gave this problem to my friends they said ...
user avatar
2 votes
1 answer
212 views

Calculate the value $\lim_{n\to \infty}\frac{\sum_{j=1}^n \sum_{k=1}^n k^{1/k^j}}{\sqrt[n]{(\sum_{j=1}^n j!)\sum_{j=1}^n j^n}}$

As in title, I want to calculate the following value $$\lim_{n\to \infty}\frac{\sum_{j=1}^n \sum_{k=1}^n k^{1/k^j}}{\sqrt[n]{(\sum_{j=1}^n j!)\sum_{j=1}^n j^n}}.$$ Here is my attempt: Since $\sum_{j=...
SuperSupao's user avatar
-1 votes
2 answers
96 views

Evaluate $\sum_{m=1}^{\infty} \frac{(-1)^m \mathcal{H}_{2m} }{2m+1} - \frac{1}{2} \sum_ {m=1}^{\infty} \frac{(-1)^m \mathcal{H}_m}{2m+1}$ [duplicate]

Let's declare $\mathcal{G}$ is constant of Catalanand the $\mathcal{H}_m-st$ mharmonic term. Let it be shown that: $$\displaystyle{\sum_{m=1}^{\infty} \frac{(-1)^m \mathcal{H}_{2m} }{2m+1} -\frac{1}{2}...
Mods And Staff Are Not Fair's user avatar
1 vote
2 answers
105 views

Evaluate $\sum_{n=1}^{\infty} (-1)^{n+1} H_n \left( \frac{1}{n+1} - \frac{1}{n+3} + \frac{1}{n+5} - \ldots \right)$

$$\sum_{n=1}^{\infty} (-1)^{n+1} H_n \left( \frac{1}{n+1} - \frac{1}{n+3} + \frac{1}{n+5} - \ldots \right) = \frac{\pi}{16} \cdot \log(2) + \frac{3}{16} \cdot \log(2) - \frac{\pi^2}{192}$$ $$\sum_{k=...
Mods And Staff Are Not Fair's user avatar
1 vote
2 answers
64 views

Closed form for $f_k(y)$

The question is quite simple. Given $$\sum_{k=0}^{n-1}(x+y)^k$$ We can re-write it in terms as a polynomial in $x$, with coefficients being polynomials in $y$, i.e $$\sum_{k=0}^{n-1}(x+y)^k = \sum_{k=...
Mako's user avatar
  • 702
1 vote
3 answers
66 views

I want to use integration for performing summation in Algebra

I am a class 9th student. Sorry if my problem is silly. I am trying to find the sum of squares from 1 to 10. For this I tried summation, and it was fine. But now I came to know that Integration can be ...
Shivam kumar Gupta's user avatar
3 votes
1 answer
143 views

Show that $\sum_{n=1}^{\infty} \frac{(-1)^n (\psi(n) - \psi(2n))}{n} = \frac{\pi^2}{16} + \left(\frac{\ln(2)}{2}\right)^2$

Show That $$\sum_{n=1}^{\infty} \frac{(-1)^n (\psi(n) - \psi(2n))}{n} =\bbox[15px, #B3E0FF, border: 5px groove #0066CC]{\frac{\pi^2}{16} + \left(\frac{\ln(2)}{2}\right)^2}$$ my work $$\sum_{n=1}^{\...
Mods And Staff Are Not Fair's user avatar
3 votes
0 answers
63 views

Is there any function in which the Maclaurin series evaluates to having prime numbered powers and factorials? [duplicate]

I am searching for any information or analysis regarding the functions $$f(x)=\sum_{n=1}^{\infty}\frac{x^{p\left(n\right)}}{\left(p\left(n\right)\right)!}$$ or $$g(x)=\sum_{n=1}^{\infty}\frac{\left(-1\...
Ian N's user avatar
  • 41
5 votes
3 answers
193 views

Show that $\sum_ {k=1}^{\infty}\dfrac{\zeta(2k)-\zeta(3k)}{k}=\ln\left(\frac{2\cosh\left(\sqrt{3}\pi/2\right)}{3\pi}\right)$

Question $$\zeta(k)=1+\dfrac{1}{2^k}+\dfrac{1}{3^k}+\cdots+\dfrac{1}{n^k}+\cdots$$ Prove that : $$\sum_ {k=1}^{\infty}\dfrac{\zeta(2k)-\zeta(3k)}{k}=\ln\left(\frac{2\cosh\left(\sqrt{3}\pi/2\right)}{...
user avatar
10 votes
3 answers
190 views

Show that $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^2} \sum_{n=1}^k \frac{1}{n}=\frac{5\zeta(3)}{8}$

$$\sum_{k=1}^{\infty} \dfrac{(-1)^{k+1}}{k^2} \sum_{n=1}^k \dfrac{1}{n}=\frac{5\zeta(3)}{8}$$ I tried to create a proof from some lemmas some are suggested by my Senior friends Lemma 1 $$ {H_n} = \sum\...
user avatar
2 votes
0 answers
82 views

Limit : $\lim_{n\to+\infty}a^n(n-\zeta(2)-\zeta(3)-\cdots-\zeta(n))$

question Compute the limit $$\displaystyle{\lim_{n\to+\infty}a^n(n-\zeta(2)-\zeta(3)-\cdots-\zeta(n))}$$, if any, for the various values of the positive real a, where $\zeta$ the zeta function of Mr. ...
Mods And Staff Are Not Fair's user avatar
0 votes
1 answer
75 views

where is the mistake in my calculations of $\displaystyle \lim_{n \to \infty} \sum\limits_{k=1 }^n \frac{a_k}{(n+1-k)(n+2-k)}= \lim_{n\to \infty}a_n$

if $\lim\limits_{n \to \infty}a_n =a$ prove that $\displaystyle \lim_{n \to \infty} \sum\limits_{k=1 }^n \frac{a_k}{(n+1-k)(n+2-k)}= a$ define $b_{n-1}= a_n - a_{n-1}$ then $\lim\limits_{n \to \...
pie's user avatar
  • 6,563
1 vote
0 answers
137 views

Simple algebra in rearring terms

I have a very simple mathematical question, and it is just about algebra which seems very tedious. First, let me state my problem from the beginning: Let $i$ be an index representing countries ($i = {...
Maximilian's user avatar
6 votes
2 answers
186 views

Calculate $\sum\limits_{n = - \infty }^\infty {\frac{{\log \left( {{{\left( {n + \frac{1}{3}} \right)}^2}} \right)}}{{n + \frac{1}{3}}}} $

question: how do we find that: $$ S = \sum\limits_{n = - \infty }^\infty {\frac{{\log \left( {{{\left( {n + \frac{1}{3}} \right)}^2}} \right)}}{{n + \frac{1}{3}}}} $$ I modified the sum $$\sum\...
user avatar

15 30 50 per page