2
$\begingroup$

I'm unable to solve this question:
$\cos(\theta)=\dfrac{\cos(\alpha)+\cos(\beta)}{1+\cos(\alpha) \cos(\beta)}$

Prove: $\tan^2\left(\frac\theta2\right)= \tan^2\left(\frac\alpha2\right)\tan^2\left(\frac\beta2\right)$


I have tried the following:

  1. Using the indentity: $\cos(\theta)=\dfrac{1-\tan^2\left(\frac\theta2\right)}{1+\tan^2\left(\frac\theta2\right)}$
  2. Diving by $\cos (\alpha) \cos (\beta)$
  3. Creating a triangle, to find $\tan(\theta)= \sin \alpha \sin \beta$

Every time I got a huge complex equation with roots. Any help would be appreciated.

$\endgroup$
3
  • 1
    $\begingroup$ In your step 3, I think it should be $\tan( \theta) = \dfrac {\sin \alpha \sin \beta}{\cos(\alpha) + \cos (\beta)}$ instead. $\endgroup$
    – Mick
    Commented Aug 18, 2014 at 15:07
  • $\begingroup$ Oh sorry, it is. :) $\endgroup$ Commented Aug 18, 2014 at 15:51
  • $\begingroup$ Related : math.stackexchange.com/questions/411913/… $\endgroup$ Commented Aug 18, 2014 at 16:35

2 Answers 2

4
$\begingroup$

You may try componendo and dividendo :

$\dfrac{1-\tan^2\left(\frac\theta2\right)}{1+\tan^2\left(\frac\theta2\right)}=\dfrac{\cos(\alpha)+cos(\beta)}{1+\cos(\alpha) \cos(\beta)} \\ \iff \dfrac{-2\tan^2\left(\frac\theta2\right)}{2} \stackrel{\color{red}{*}}{=} \dfrac{\cos(\alpha)+cos(\beta) - 1-\cos(\alpha)\cos(\beta)}{\cos(\alpha)+cos(\beta) + 1+\cos(\alpha)\cos(\beta)} \\ \iff \tan^2\left(\frac\theta2\right) = \dfrac{(1-\cos(\alpha))(1-\cos(\beta))}{(1+\cos(\alpha))(1+\cos(\beta))} $

$\color{Red}{*} :$ componendo and dividendo

$\endgroup$
2
  • 1
    $\begingroup$ Always eager to learn something new. Thanks! $\endgroup$ Commented Aug 18, 2014 at 15:03
  • $\begingroup$ np :) c&d is one of those beautiful algebra methods which is something i have never seen mentioned in any highschool text books! $\endgroup$
    – AgentS
    Commented Aug 18, 2014 at 15:11
3
$\begingroup$

$$ \tan ^2 {\frac {\theta}{2}} = \frac{\sin^2 {\frac {\theta}{2}} }{\cos^2 {\frac {\theta}{2}}} = \frac{ \left({\dfrac{1 - \cos \theta}{2}}\right)}{\left({\dfrac{1 + \cos \theta}{2}}\right)} \;\; \text{(since $\cos 2 \theta = \cos^2 \theta - \sin^2 \theta= 1 - 2 \sin^2 \theta = 2 \cos^2\theta - 1$ )}$$

Now substituting for $\cos \theta$ and factorising we have,

$$ = \frac{1 + \cos \alpha \cos \beta - \cos \alpha - \cos \beta }{ 1 + \cos \alpha \cos \beta + \cos \alpha + \cos \beta} = \frac{(1 - \cos \alpha)(1 - \cos \beta)}{(1 + \cos \alpha)(1 + \cos \beta)} $$

Now use the same formulas for $cos 2 \theta $ mentioned above strategically to negate the $1$ present in all the factors and to introduce $\dfrac {\alpha}{2} $. Then,

$$ = \frac{[1 - (1 - 2 \sin^2 \frac {\alpha}{2} ) ][1 - ( 1 - 2 \sin^2 \frac {\beta}{2})]}{[1 + (2 \cos^2 \frac {\alpha}{2} - 1)][1 + (2 \cos ^2 \frac {\beta}{2} - 1)]} $$

Remember $\tan \theta = \dfrac{\sin \theta}{\cos \theta}$.

Now Simplify!!

$\endgroup$

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .