64
$\begingroup$

I have been having extreme difficulties with this integral. I would appreciate any and all help. $$ \int \sqrt{\tan x} ~ \mathrm{d}{x}. $$

$\endgroup$
8
  • 6
    $\begingroup$ Have you tried $tan(x)=u^2$ ? $\endgroup$
    – user146010
    Commented Jun 10, 2014 at 1:34
  • 1
    $\begingroup$ Wait, nevermind. I got it. Thanks for the hint. $\endgroup$ Commented Jun 10, 2014 at 1:36
  • 5
    $\begingroup$ @user155812: You should have obtained: $\int \frac{2u^2}{u^4+1}\mathrm{d} u$, after which you use partial fractions, via $(u^4+1) = (u^2+u\sqrt 2 +1)(u^2-u\sqrt 2 +1)$ $\endgroup$ Commented Jun 10, 2014 at 1:44
  • 3
    $\begingroup$ I rolled back the previous edit of the title because the use of "primitive" to mean "indefinite integral" is not universally understood in the mathematical literature. There was no reason to edit it given that the previous title was already unambiguously clear. $\endgroup$
    – heropup
    Commented Jun 10, 2014 at 1:53
  • 1
    $\begingroup$ The funny part is that all the answers lead to different closed formulas. $\endgroup$ Commented Jun 29, 2017 at 12:56

7 Answers 7

52
$\begingroup$

$$y=\int\sqrt{\tan x}\,\mathrm dx$$ $$g=\int\sqrt{\cot x}\,\mathrm dx$$

\begin{align} y+g&=\int\left(\sqrt{\tan x}+\sqrt{\cot x}\right)\,\mathrm dx \\&=\sqrt2\int\frac{\sin x+\cos x}{\sqrt{\sin2x}}\mathrm dx \\& =\sqrt2\int\frac{(\sin x-\cos x)'}{\sqrt{1-(\sin x-\cos x)^2}}\,\mathrm dx\\& =\sqrt2\int\frac{1}{\sqrt{1-u^2}}\,\mathrm du \\& =\sqrt2\sin^{-1}u \\& =\sqrt2\sin^{-1}(\sin x-\cos x)\end{align}

\begin{align} y-g&=\int\left(\sqrt{\tan x}-\sqrt{\cot x}\right)\,\mathrm dx \\& =\sqrt2\int\frac{\sin x-\cos x}{\sqrt{\sin2x}} \,\mathrm dx\\& =-\sqrt2\int\frac{(\sin x+\cos x)'}{\sqrt{(\sin x+\cos x)^2-1}}\,\mathrm dx \\& =-\sqrt2\int\frac{\mathrm ds}{\sqrt{s^2-1}} \\& =-\sqrt2\cosh^{-1}(\sin x+\cos x) \end{align} \begin{align}y&=\frac{(y-g)+(y+g)}2 \\&= \frac{\sqrt2}2(\sin^{-1}(\sin x-\cos x)-\cosh^{-1}(\sin x+\cos x)) + C\end{align}

$\endgroup$
2
  • $\begingroup$ Why?? In the integral $y-g$ You have the substitution $s=\sin x + \cos x$ and the expression $\dfrac{s'}{\sqrt{s^2-1}}dx$ becomes $\dfrac{ds}{\sqrt{s^2-1}}$. Can you explain that step?? $\endgroup$ Commented Dec 15, 2017 at 0:56
  • $\begingroup$ @GabrielSandoval I think it's a typo, it should be just $ds$ instead of $s' ds$ $\endgroup$
    – Itachi
    Commented May 7, 2020 at 5:10
45
$\begingroup$

Let $I = \int\sqrt{\tan x}\;\mathrm{d}x$ and $J = \int\sqrt{\cot x}\;\mathrm{d}x$.

Now $$\begin{align}I + J &= \int\left(\sqrt{\tan x} + \sqrt{\cot x}\right) \;\mathrm{d}x \\ &= \sqrt{2} \int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \;\mathrm{d}x \\[5pt] &= \sqrt{2} \int\frac{(\sin x - \cos x)'}{\sqrt{1-(\sin x - \cos x)^2}} \;\mathrm{d}x \\[5pt] &= \sqrt{2} \sin^{-1}(\sin x - \cos x) + \mathbb{C_1} \tag{1} \\ \end{align}$$

and $$\begin{align}I - J &= \int\left(\sqrt{\tan x} - \sqrt{\cot x}\right) \;\mathrm{d}x \\ &= \sqrt{2} \int\frac{(\sin x - \cos x)}{\sqrt{\sin 2x}} \;\mathrm{d}x \\ &= -\sqrt{2} \int\frac{(\sin x + \cos x)'}{\sqrt{(\sin x + \cos x)^2 - 1}} \;\mathrm{d}x \\ &= -\sqrt{2} \ln\left|(\sin x + \cos x) + \sqrt{(\sin x + \cos x)^2 - 1}\right| + \mathbb{C_2} \tag{2} \\ \end{align}$$

Now, adding $(1)$ and $(2)$:

$$I = \frac{1}{\sqrt{2}} \sin^{-1}(\sin x - \cos x) - \frac{1}{\sqrt{2}} \ln\left|\sin x + \cos x + \sqrt{\sin 2x} \vphantom{x^{x^x}} \right| + \mathbb{C}$$

$\endgroup$
4
  • 1
    $\begingroup$ Wait, do you mean $\int(I+J) = \int (\sqrt{\tan x}+\sqrt{\cot x})dx$? $\endgroup$
    – Addem
    Commented Aug 9, 2015 at 18:31
  • 2
    $\begingroup$ actually Here $\displaystyle I = \int\sqrt{\tan x}dx$ and $\displaystyle J = \int\sqrt{\cot x}dx$ $\endgroup$
    – juantheron
    Commented Aug 9, 2015 at 18:59
  • 2
    $\begingroup$ It might be more elegant to write the solution as a parallel construct using $\text{arsinh}(\sin(x)+\cos(x))$, rather than the log equivalent. $\endgroup$
    – Mark Viola
    Commented Mar 3, 2016 at 15:56
  • 3
    $\begingroup$ @MarkViola not really, not everyone (for example highschool students) is acquainted with hyperbolic functions $\endgroup$
    – Archer
    Commented Jul 19, 2018 at 6:59
38
$\begingroup$

Let $u = \sqrt{\tan x}$, then $u^2 = \tan x$. Thus $2u\;\mathrm{d}u = \sec^2 x\;\mathrm{d}x = (u^4 + 1)\mathrm{d}x$. Thus $\mathrm{d}x = \dfrac{2u\;\mathrm{d}u}{u^4 + 1}$. So:

$$\int\sqrt{\tan x}\;\mathrm{d}x = \int\frac{2u^2}{u^4+1}\;\mathrm{d}u$$ You can take it from here.

$\endgroup$
0
22
$\begingroup$

As already mentioned in some answers, let $t^2=\tan x \implies 2tdt=\sec^2x dx\implies dx=\frac{2tdt}{t^4+1}$. Now, We can easily reach to the final answer as follows $$I=\int \frac{2t^2 dt}{t^4+1}=\int \frac{2 dt}{t^2+\frac{1}{t^2}}=\int \frac{\left(1+\frac{1}{t^2}\right)+\left(1-\frac{1}{t^2}\right) dt}{t^2+\frac{1}{t^2}}$$ $$=\int \frac{\left(1+\frac{1}{t^2}\right) dt}{t^2+\frac{1}{t^2}}+\int \frac{\left(1-\frac{1}{t^2}\right) dt}{t^2+\frac{1}{t^2}}=\int \frac{\left(1+\frac{1}{t^2}\right) dt}{\left(t-\frac{1}{t}\right)^2+2}+\int \frac{\left(1-\frac{1}{t^2}\right) dt}{\left(t+\frac{1}{t}\right)^2-2}$$ $$=\int \frac{\left(1+\frac{1}{t^2}\right) dt}{\left(t-\frac{1}{t}\right)^2+(\sqrt{2})^2}+\int \frac{\left(1-\frac{1}{t^2}\right) dt}{\left(t+\frac{1}{t}\right)^2-(\sqrt{2})^2}$$ $$=\frac{1}{\sqrt{2}}\tan^{-1}\left(\frac{t-\frac{1}{t}}{\sqrt{2}}\right)+\frac{1}{2\sqrt{2}}\ln \left(\frac{\left(t+\frac{1}{t}\right)-\sqrt{2}}{\left(t+\frac{1}{t}\right)+\sqrt{2}}\right)+C$$ Now, substituting the value of $t$, we get $$I=\frac{1}{\sqrt{2}}\tan^{-1}\left(\frac{\sqrt{\tan x}-\frac{1}{\sqrt{\tan x}}}{\sqrt{2}}\right)+\frac{1}{2\sqrt{2}}\ln\left(\frac{\sqrt{\tan x}+\frac{1}{\sqrt{\tan x}}-\sqrt{2}}{\sqrt{\tan x}+\frac{1}{\sqrt{\tan x}}+\sqrt{2}}\right)+C$$ $$=\frac{1}{\sqrt{2}}\tan^{-1}\left(\frac{\sqrt{\tan x}-\sqrt{\cot x}}{\sqrt{2}}\right)+\frac{1}{2\sqrt{2}}\ln\left(\frac{\sqrt{\tan x}+\sqrt{\cot x}-\sqrt{2}}{\sqrt{\tan x}+\sqrt{\cot x}+\sqrt{2}}\right)+C$$ $$=\frac{1}{\sqrt{2}}\tan^{-1}\left(\frac{\sin x-\cos x}{\sqrt{\sin 2x}}\right)+\frac{1}{2\sqrt{2}}\ln\left(\frac{\sin x+\cos x-\sqrt{\sin 2x}}{\sin x+\cos x+\sqrt{\sin 2x}}\right)+C$$

$\endgroup$
12
$\begingroup$

A slight improvement: instead of $u^2=\tan\theta$, let $u^2=2\tan\theta$. This gives $$I=\frac1{\sqrt2}\int \frac{4u^2}{u^4+4}\,du =\frac1{\sqrt2}\int \frac{u}{u^2-2u+2}-\frac{u}{u^2+2u+2}\,du\ .$$ Observe that except for the constant out the front, no surds are involved. Now substitute $v=u-1$ for the first bit and $v=u+1$ for the second bit. You will need to be careful with the algebra, but it's not all that bad.

$\endgroup$
2
$\begingroup$

Hint:

Let $\sqrt{\tan x}=u$, $\quad \frac{1}{2\sqrt{\tan x}}\sec^2 x dx=du$, $\frac{1+u^4}{2u}\ dx=du$ $$\int \sqrt{\tan x}\ dx=\int u \frac{2u}{1+u^4}\ du=\int \frac{2u^2}{1+u^4}\ du$$ Now, make partial fractions $$\frac{2u^2}{1+u^4}=\frac{u^2}{(u^2+u\sqrt 2+1)(u^2-u\sqrt 2+1)}$$ Carry on to get the answer

$\endgroup$
2
$\begingroup$

Just another way to do it. $$I=\int\sqrt{\tan x}\,dx = \int\frac{2u^2}{u^4+1}\,du=\int \left(\frac{1}{u^2+a}+\frac{1}{u^2-a} \right)\,du$$ where $a=i$ $$I=\frac 1{\sqrt a}\left(\tan ^{-1}\left(\frac{u}{\sqrt{a}}\right)-\tanh ^{-1}\left(\frac{u}{\sqrt{a}}\right)\right)=-\frac{1-i}{\sqrt{2}}\left(\tan ^{-1}\left((-1)^{3/4} u\right)-\tanh ^{-1}\left((-1)^{3/4} u\right)\right)$$

$\endgroup$

Not the answer you're looking for? Browse other questions tagged .