-2
$\begingroup$

I can't get very far with this one :/

$\endgroup$

3 Answers 3

2
$\begingroup$

$$\left.\binom{m+n}m\middle/\binom{m+n}{m+1}\right. =\left.\frac{(m+n)!}{m!n!}\middle/\frac{(m+n)!}{(m+1)!(n-1)!}\right.$$

$$=\frac{(m+1)\cdot m! (n-1)!}{m!\cdot n\cdot(n-1)!}$$

$\endgroup$
3
  • $\begingroup$ Are you solving from the left or right of the equal sign? $\endgroup$
    – user135094
    Commented Mar 13, 2014 at 3:13
  • $\begingroup$ @user135094, neither. I've tried to find the ratio of the two binomial coefficients, then apply $$\frac ab=\frac cd\iff ad=bc$$ $\endgroup$ Commented Mar 13, 2014 at 3:20
  • $\begingroup$ @user135094: just cancel the numerator and denominator in the last fraction $\endgroup$
    – robjohn
    Commented Mar 13, 2014 at 4:17
0
$\begingroup$

Consider $$ \begin{align} \text{LHS} &=\frac{n(m+n)!}{m!(m+n-m)!}\\ &=\frac{n(m+n)!}{m!n!}\\ &=\frac{(m+n)!}{m!(n-1)!}\\ &=\frac{(m+1)(m+n)!}{(m+1)m!(n-1)!}\\ &=\frac{(m+1)(m+n)!}{(m+1)!(n-1)!}\\ &=\frac{(m+1)(m+n)!}{(m+1)!((m+n)-(m+1))!}\\[9pt] &=\text{RHS} \end{align} $$

$\endgroup$
0
$\begingroup$

Using the identity from this answer $$ r\binom{n}{r}=n\binom{n-1}{r-1}\tag{1} $$ and the basic $$ \binom{n}{m}=\binom{n}{n-m}\tag{2} $$ we get $$ \begin{align} (m+1)\binom{n+m}{m+1} &=(n+m)\binom{n+m-1}{m}\tag{3}\\ &=(n+m)\binom{n+m-1}{n-1}\tag{4}\\ &=n\binom{n+m}{n}\tag{5} \end{align} $$ Explanation:
$(3)$: apply $(1)$
$(4)$: apply $(2)$
$(5)$: apply $(1)$

$\endgroup$

Not the answer you're looking for? Browse other questions tagged .