7
$\begingroup$

QUESTION:How to evaluate $$\int_0^1 \ln ^3(1+x) \ln (1-x) d x$$?

I'm not sure of the closed form of the integral, as I haven't evaluated it yet. However, after evaluating the integral $$\int_0^1 \ln (1+x) \ln (1-x) \, dx,$$ I thought about integrating $$\int_0^1 \ln^3(1+x) \ln (1-x) \, dx.$$

I am also interested in evaluation of $$\int_0^1 \ln^n(1+x) \ln (1-x) \, dx.$$ If possible

Here is my attempt

\begin{aligned} & I=\int_0^1 \ln ^3(1+x) \ln (1-x) d x \\ & \text { Let }: a=\ln (1-x) \wedge b=\ln (1+x) \\ & \text { and } \quad b^3 a=\frac{1}{8}(a+b)^4-\frac{1}{8}(a-b)^4-a^3 b \\ & \Rightarrow I=\frac{1}{8} \underbrace{\int_0^1 \ln ^4\left(1-x^2\right) d x}_A-\frac{1}{8} \underbrace{\int_0^1 \ln ^4\left(\frac{1-x}{1+x}\right) d x}_B \\ & -\underbrace{\int_0^1 \ln ^3(1-x) \ln (1+x) d x}_C \\ & A=\frac{1}{2} \int_0^1 x^{-\frac{1}{2}} \ln ^4(1-x) d x=\left.\frac{1}{2} \mathrm{~B}^{(4)}\left(\frac{1}{2}, a\right)\right|_{a=1} \\ & =\frac{1}{2} \mathrm{~B}\left(\frac{1}{2}, a\right)\left\{\left[\psi^{(0)}(a)-\psi^{(0)}\left(a+\frac{1}{2}\right)\right]^4\right. \\ & +6\left[\psi^{(1)}(a)-\psi^{(1)}\left(a+\frac{1}{2}\right)\right]\left[\psi^{(0)}(a)-\psi^{(0)}\left(a+\frac{1}{2}\right)\right]^2 \\ & +4\left[\psi^{(2)}(a)-\psi^{(2)}\left(a+\frac{1}{2}\right)\right]\left[\psi^{(0)}(a)-\psi^{(0)}\left(a+\frac{1}{2}\right)\right] \\ & \left.+3\left[\psi^{(1)}(a)-\psi^{(1)}\left(a+\frac{1}{2}\right)\right]^2+\psi^{(3)}(a)-\psi^{(3)}\left(a+\frac{1}{2}\right)\right\}\left.\right|_{a=1} \\ & \text { But }: \psi^{(0)}=-\gamma \wedge \psi^{(0)}\left(\frac{3}{2}\right)=2-2 \ln (2)-\gamma \\ \text{and to $n \in \mathbb{N}^{+}$:}\\ & \star \psi^{(n)}(1)-\psi^{(n)}\left(\frac{3}{2}\right)=(-1)^{n+1} n!\left[2^{n+1}+\left(2-2^{n+1}\right) \zeta(n+1)\right] \\ & \Rightarrow A=(2 \ln (2)-2)^4+6(4-2 \zeta(2))(2 \ln (2)-2)^2 \\ & +4(12 \zeta(3)-16)(2 \ln (2)-2)+3(4-2 \zeta(2))^2+96-84 \zeta(4) \\ & \Rightarrow A=-48 \ln ^2(2) \zeta(2)+96 \ln (2)(\zeta(3)+\zeta(2))+16 \ln ^4(2) \\ & -64 \ln ^3(2)+192 \ln ^2(2)-54 \zeta(4)-96 \zeta(3)-96 \zeta(2) \\ & -384 \ln (2)+384 \ldots(\alpha) \\ & \end{aligned}

As you can see, I was able to solve the integral $A$, but I don't have any ideas for integrals $B$ and $C.$

$\endgroup$
3
  • $\begingroup$ fyi, there is a closed form integral of $\ln^3(1+x)\ln(1-x)$ which would only require you to calculate $Li_k((x+1)/2)$ for $k=2,3,4$ at the boundary conditions $x=0$, and $x=1$, that is when evaluating $\int_0^1$. You will need $\zeta(2), \zeta(3), \zeta(4)$ to write the answer, and the normal elementary operations such as multiplication, addition, logarithms, integer powers of logarithms. $\endgroup$
    – Snared
    Commented May 13 at 20:53
  • $\begingroup$ There is a method in the polylog integral solver I used that allowed me to find the form, and prove that its derivative was exactly your integrand and therefore allowing me to write your integral in terms of a final number solution. I was able to do this quickly due to my superior tooling, and the proof is valid since the differentiation is easy to compute and verify it is indeed the integral, however, I don't think it would be a good idea to spend multiple hours trying to write this integral out by hand. $\endgroup$
    – Snared
    Commented May 13 at 21:02
  • 1
    $\begingroup$ @Snared The current answer doesn't contain $\zeta(3)$ $\endgroup$ Commented May 14 at 2:20

3 Answers 3

9
$\begingroup$

Solution for integral B

Letting $t=\frac{1-x}{1+x}$ transforms the integral into $$ \begin{aligned} I & =\int_0^1 \ln ^4 t \frac{2 d t}{(1+t)^2} \\ & =2 \int_0^1 \frac{\ln ^4 t}{(1+t)^2} d t\\&= \left. I^{(4)}(a)\right|_{a=0} \end{aligned} $$ where $$ \begin{aligned} I(a) & =\int_0^1 \frac{t^a}{(1+t)^2} d t \\ & =\sum_{n=1}^{\infty}(-1)^{n-1} n \int_0^1 t^{a+n-1} d t \\ & =\sum_{n=1}^{\infty} \frac{(-1)^{n-1} n}{a+n} \end{aligned} $$ Differentiating $I(a)$ w.r.t.$a$ by four times at $a=0$ yields $$ \begin{aligned} I^{(4)}(0) & =\left.\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x(-1)^4 4!}{(a+n)^5}\right|_{a=0} \\ & =24 \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^4}\\ & =24\left[\sum_{n=1}^{\infty} \frac{1}{n^4}-2 \sum_{n=1}^{\infty} \frac{1}{(2 n)^4}\right] \\ & =21 \zeta(4) \\ & =\frac{21 \pi^4}{90} \\ & =\frac{7 \pi^4}{30} \end{aligned} $$ Hence we get $$ \boxed{\int_0^1 \ln ^4\left(\frac{1-x}{1+x}\right) d x=2 \cdot \frac{7 \pi^4}{30}=\frac{7 \pi^4}{15}} $$ In general,

$$\int_0^1 \ln ^n\left(\frac{1-x}{1+x}\right) d x=(-1)^n 2 n!\left(1-\frac{1}{2^{n-1}}\right) \zeta(n)$$

$\endgroup$
3
  • $\begingroup$ Thanks a lot!!! $\endgroup$ Commented May 14 at 3:39
  • 1
    $\begingroup$ Impressive and so simple ......after reading it !! $\endgroup$ Commented May 14 at 4:30
  • 2
    $\begingroup$ Thank you for your support! The general case can be easily obtained by differentiating $I(a)$ by $n$ times at $a=0$ as above. $\endgroup$
    – Lai
    Commented May 14 at 5:51
3
+50
$\begingroup$

$\color{brown}{\textbf{Integral B.}}$

$$I_B=\int\limits_0^1 \ln^4\left(\dfrac{1+x}{1-x}\right)\,\text dx =16\int\limits_0^1 \operatorname{arctanh}^4 x\,\text dx =\dfrac7{15}\pi^4,$$ $$I_B\approx 45.45757\ 58158\ 67804\ 04367\ 21552\ 54729.$$ Really, $$I_B=16\int\limits_0^1 \operatorname{arctanh}^4 x\,\text dx =16\int\limits_0^\infty \dfrac{t^4\,\text dt}{\cosh^2t} =64\int\limits_0^\infty \dfrac{t^4\,e^{-2t}\,\text dt}{\left(1+e^{-2t}\right)^2}$$ $$=64\sum\limits_{k=1}^\infty (-1)^{k+1} k\int\limits_0^\infty t^4 e^{-2kt}\,\text dt =64\sum\limits_{k=1}^\infty (-1)^{k+1} k\cdot \dfrac3{4k^5}$$ $$=48\sum\limits_{k=1}^\infty \dfrac{(-1)^{k+1}}{k^4} =\dfrac7{15}\pi^4.$$

$\color{brown}{\textbf{Main integral.}}$

Substitution $$x=e^t-1,\quad \text dx=e^t\text dt,\quad \ln(1+x)=t,$$ $$I=\int\limits_0^1 \ln^3(1+x)\ln(1-x)\,\text dx =\int\limits_0^{\ln2} t^3 e^t \ln\left(2-e^{t}\right)\,\text dt$$ $$=\int\limits_0^{\ln2} t^3 e^t \left(\ln2+\ln\left(1-\frac12e^t\right)\right)\,\text dt=I_0+I_1,$$ where $$I_0=\ln 2\int\limits_0^{\ln2}t^3 e^t\,\text dt,\quad I_1=\int\limits_0^{\ln2} t^3 e^t \ln\left(1-\frac12e^t\right)\,\text dt.\tag1$$ Then $$I_0=\ln2\cdot e^t\left(t^3-3t^2+6t-6\right)\bigg|_0^{\ln2} =2(\ln2)^4-6(\ln2)^3+12(\ln2)^2-12\ln2+6\ln2,$$ $$I_0=2\ln^4(2)-6\ln^3(2)+12\ln^2(2)-6\ln2.\tag2$$ Also, $$I_1=\int\limits_0^{\ln2} t^3 e^t \ln\left(1-\frac12e^t\right)\,\text dt =-\int\limits_0^{\ln2} t^3 e^t \sum\limits_{k=1}^{\infty}\dfrac1k\dfrac{e^{kt}}{2^k} \,\text dt =-\sum\limits_{k=1}^{\infty}\dfrac{2^{-k}}{k}\,I_{1,k+1},$$ where $$I_{1,k}=\int\limits_0^{\ln2} t^3 e^{kt}\text dt =\dfrac1{k^4}\int\limits_0^{\ln2} (kt)^3 e^{kt}\text d(kt) =\dfrac1{k^4}\int\limits_0^{k\ln2} t^3 e^{t}\text dt$$ $$=\dfrac1{k^4}e^t\left(t^3-3t^2+6t-6\right)\bigg|_0^{k\ln2}$$ $$=\dfrac6{k^4}+2^k\left(\dfrac{\ln^3(2)}{k}-\dfrac{3\ln^2(2)}{k^2}+\dfrac{6\ln2}{k^3}-\dfrac{6}{k^4}\right),$$ Let $$J_0=-\sum\limits_{k=1}^{\infty}\dfrac{2^{-k}}{k}\,\dfrac6{(k+1)^4} =-24+π^2(1-\ln(2))-6\ln^2(2)$$ $$+2\ln^3(2)+\ln(64) +12\operatorname{Li_4}\left(\dfrac12\right)+\dfrac{21}2 ζ(3),$$ enter image description here $$\begin{align} &J_1=-\sum\limits_{k=1}^{\infty}\dfrac{2\ln^3(2)}{k(k+1)}=-2\ln^3(2),\\[4pt] &J_2=\sum\limits_{k=1}^{\infty}\dfrac{6\ln^2(2)}{k(k+1)^2}=(12-\pi^2)\ln^2(2),\\[4pt] &J_3=-\sum\limits_{k=1}^{\infty}\dfrac{12\ln(2)}{k(k+1)^3}=2\ln(2)(π^2-18+6 ζ(3)),\\[4pt] &J_4=\sum\limits_{k=1}^{\infty}\dfrac{12}{k(k+1)^4}=48-2\pi^2-\dfrac2{15}π^4- 12ζ(3). \end{align}$$ Then $$\begin{align} &I_1=J_0+J_1+J_2+J_3+J_4=24-\pi^2-\dfrac2{15}\pi^4-\dfrac32\zeta(3) \\[4pt] &+\big(\pi^2-30+12\zeta(3)\big)\ln(2)+(6-\pi^2)\ln^2(2) +12\operatorname{Li_4}\left(\dfrac12\right), \end{align}\tag3$$ $$\color{green}{\mathbf{\begin{align}&I=24-\pi^2-\dfrac2{15}\pi^4-\dfrac32\zeta(3)+\big(\pi^2-36+12\zeta(3)\big)\ln(2)+(18-\pi^2)\ln^2(2)\\[4pt] &-6\ln^3(2)+2\ln^4(2)+12\operatorname{Li_4}\left(\dfrac12\right)\approx -0.19480\ 62619\ 27738\ 36514\ 85561\ 20791.\end{align}\tag4}}$$ Obtained result corresponds with WA calculations. WA checking

$\endgroup$
2
  • 1
    $\begingroup$ Fantastic answer,but are you sure $$\int\limits_0^1 \ln^4\left(\dfrac{1+x}{1-x}\right)\,\text dx =\dfrac1{16}\int\limits_0^1 \arctan^4 x\,\text dx$$? $\endgroup$ Commented May 17 at 5:49
  • 1
    $\begingroup$ @Martin.s Thanks,! Ready. $\endgroup$ Commented May 17 at 6:47
1
$\begingroup$

Too long for a comment: For a first solution, use a similar strategy to the one here: https://math.stackexchange.com/q/4917671.

For a second solution, based on reducing the calculations to harmonic series, combine $$\log^3(1+x) = \sum (-1)^n \frac{{x}^{n + 1}}{n + 1} (H_n^2 - H_n^{(2)})$$ together with the integral identity $$\int_0^1 x^{n-1}\log(1-x) dx = - \frac{H_n}{n},$$ both presented in (Almost) Impossible Integrals, Sums, and Series (2019). If interested, similar and powerful identities also involving skew-harmonic numbers can be found in the sequel, More (Almost) Impossible Integrals, Sums, and Series (2023).

$\endgroup$
2
  • $\begingroup$ I am not good at Euler sums (heavyweight), so I am interested in lower-weight Euler sums or classical methods. $\endgroup$ Commented May 17 at 7:28
  • $\begingroup$ I contacted Cornel, but it looks like he is busy because he usually replies to my messages. $$\int_0^1 \ln^n(1+x) \ln^m(1-x) \, dx.$$ $\endgroup$ Commented May 17 at 7:30

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .