0
$\begingroup$

Trying to solve this question:
Surface S is obtained by revolving the line $x^2-z^2=4$ around the "z" axis.

  1. Write the equation for S.
  2. Show that exactly two lines pass through M=(2,0,0) which also lies exactly on the surface of S. Obtain the equation for the lines.

For part 1, we use $x=\sqrt (x^2+y^2)$.
If I'm correct; $S=x^2+y^2-z^2=4$ which makes a hyperboloid and hyperboloids are doubly ruled. However, I have no idea how to obtain the equation for the lines.

If it's possible I don't want to use trigonometry(sin, cos, θ) or integration.

I've read this post but couldn't really understand it.

$\endgroup$

1 Answer 1

0
$\begingroup$

Your hyperboloid can be represented as

$$ S=\left(\matrix{x\\ y\\ z\\}\right)\left(\matrix{1&0&0\\ 0&1&0\\ 0&0&-1\\}\right)\left(\matrix{x\\ y\\ z\\}\right)-4=0 $$

or $p^TMp-4=0$

now given a line $p = p_0 + \lambda \vec v$ with $\vec v = (v_x,v_y,v_z)$, if the line is contained in $S$ we should have

$$ (p_0+\lambda\vec v)^tM(p_0+\lambda\vec v)-4=p_0^TMp_0+2\lambda p_0 M \vec v+\lambda^2\vec v^TM\vec v-4=0 $$

and this should be true for all $\lambda$ hence

$$ \cases{ p_0^TMp_0-4=0\\ p_0 M \vec v=0\\ \vec v^TM\vec v=0\\ \|\vec v\|=1 } $$

as an example, given $p_0 = (0,2\sqrt{2},2)'\in S$ we need

$$ \cases{ 2\sqrt{2}v_y-2v_z=0\\ v_x^2+v_y^2-v_z^2=0\\ v_x^2+v_y^2+v_z^2=1 } $$

giving

$$ \vec v = \cases{(\frac 12,\frac 12,\frac {1}{\sqrt{2}})\\ (\frac 12,-\frac 12,-\frac {1}{\sqrt{2}}) } $$

enter image description here

$\endgroup$
3
  • $\begingroup$ Sorry but can you explain $(p^T)Mp−4=0$? how did we go from my equation to this? What does each letter represent and why have we raised p to the power of T? $\endgroup$
    – TEGNO
    Commented Feb 28 at 11:33
  • $\begingroup$ You posted your question as pertaining to multivariable calculus so a supposed you have knowledge about matrix operations. I did a matrix representation to the hyperbolic surface. The symbol $(\cdot)^T$ is used to represent the transpose operation, and $p = (x,y,z)^T$. $\endgroup$
    – Cesareo
    Commented Feb 28 at 12:14
  • 1
    $\begingroup$ Thanks a lot for the detailed explanation. Well, I'm pretty new to Multivariable Calculus. But I kind of understand it now. $\endgroup$
    – TEGNO
    Commented Feb 28 at 12:28

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .