14
$\begingroup$

In one of the final problems of the MIT integration bee for this year, $$I=\int_0^\infty\frac{\ln(2e^x-1)}{e^x-1}dx$$was one of the given problems. My try was to let $u=e^x-1$ to get $$I=\int_0^\infty\frac{\ln(2u+1)}{u(u+1)}du=\int_0^\infty\frac{\ln(x+1)}{x(x+2)}dx$$I don't know whether I would be right but I had a feeling this was a dead end. Turning the original integral into a geometric series doesn't seem promising either. How should I solve this?

Note: These problems are solved in 5 minutes so please come up with a solution that can be done in such a time limit.

$\endgroup$
2
  • 1
    $\begingroup$ Someone on YouTube posted a solution here. In a nutshell, it uses the Leibniz integral rule for differentiation under the integral sign and some series expansions. I'm not very experienced when it comes to integration bees and IDK what the expectation/skill levels are for MIT students, but if you want, I can write an unconventional answer that one wouldn't naturally come up with in a few minutes. $\endgroup$ Commented Feb 18 at 6:27
  • 2
    $\begingroup$ Fun fact, this guy's name is the same as mine :) $\endgroup$ Commented Feb 18 at 19:30

7 Answers 7

24
$\begingroup$

Substitute $t=\frac{1}{2e^x-1}$ \begin{align} & \int_0^\infty\frac{\ln(2e^x-1)}{e^x-1}dx\\ =&\int_0^1 \frac{\ln t^2}{t^2-1}dt =\int_0^1 \int_0^\infty \frac{2y}{(1+y^2)(1+t^2y^2)}dy \ dt\\ =& \ 2\int_0^\infty \frac{\arctan y}{1+y^2}dy =\arctan^2 y\bigg|_0^\infty = \frac{\pi^2}4 \end{align}

$\endgroup$
4
  • $\begingroup$ In almost every answer you have for an integral, you turn it into a double integral. I understand the purpose is to switch the integral sign, but how do you come up with integral representations of functions so easily? $\endgroup$ Commented Feb 17 at 20:01
  • 5
    $\begingroup$ @KamalSaleh - It is actually Faymann’s trick disguised in double integral, which is quicker $\endgroup$
    – Quanto
    Commented Feb 17 at 20:34
  • 1
    $\begingroup$ So what would the function $I(a)$ look like in this case? $\endgroup$ Commented Feb 17 at 20:36
  • 1
    $\begingroup$ @KamalSaleh $I(a)=\int_0^1 \frac{\ln\frac{1+a^2t^2}{1+a^2}}{t^2-1}dt$ $\endgroup$
    – Quanto
    Commented Feb 17 at 20:45
18
$\begingroup$

Put $$I\left ( a \right ) =\int_{0}^{\infty } \frac{\log\left ( ax+1 \right ) }{x\left ( x+1 \right ) }\mathrm{d}x, $$ then $$I'\left ( a \right ) =\int_{0}^{\infty } \frac{\mathrm{d}x }{\left ( ax+1 \right )\left ( x+1 \right ) }=\frac{\log a}{a-1}.$$ Therefore $$\begin{align*} I\left ( 2 \right )&= \int^{1}_{-1}\frac{\log\left(x+1\right)}{x}\mathrm{d}x\\ & = -\int_{-1}^{1} \frac{1}{x} \sum _{n = 1}^{\infty}\frac{\left ( -x \right )^n }{n}\mathrm{d}x\\ &= \sum _{n = 0}^{\infty}\int_{-1}^{1}\frac{x^{2n}}{2n+1} \mathrm{d}x\\ &=\sum _{n = 0}^{\infty}\frac{2}{\left ( 2n+1 \right )^2 } \\ &=\frac{\pi^2}{4} \end{align*}. $$

$\endgroup$
8
$\begingroup$

SOLUTION 1 (Integration Bee Style)

Let $x=-\ln(1-u)$. Then

$$ \begin{align} \mathcal{I}&:= \int_{0}^{\infty}\frac{\ln\left(2e^{x}-1\right)}{e^{x}-1}dx \\ &= \int_{0}^{1}\frac{\ln\left(2e^{-\ln\left(1-u\right)}-1\right)}{e^{-\ln\left(1-u\right)}-1}\cdot\frac{1}{1-u}du \\ &= 2\int_{0}^{1}\frac{\operatorname{artanh}u}{u}du \\ &= 2\int_{0}^{1}\sum_{n=0}^{\infty}\frac{u^{2n}}{2n+1}du \\ &= \sum_{n=0}^{\infty}\frac{2}{2n+1}\int_{0}^{1}u^{2n}du \\ &= \sum_{n=0}^{\infty}\frac{2}{\left(2n+1\right)^{2}} \\ &= 2\left(\sum_{n=1}^{\infty}\frac{1}{n^{2}}-\sum_{k=1}^{\infty}\frac{1}{4k^{2}}\right) \\ &= 2\left(\frac{\pi^{2}}{6}-\frac{\pi^{2}}{24}\right) \\ &= \frac{\pi^{2}}{4}\,.\\ \end{align} $$

We finish with

$$ \bbox[#FCFFE7,border:5px dotted#639E00,10px]{\int_{0}^{\infty}\frac{\ln\left(2e^{x}-1\right)}{e^{x}-1}dx=\frac{\pi^{2}}{4}} $$

and we're done!


SOLUTION 2 (Contour Integration)

Here is another solution that doesn't use a series evaluation, but uses Euclidean geometry and contour integrals.

We do the same substitution as the previous solution. So

$$ \begin{align} \mathcal{I} &:= \int_{0}^{\infty}\frac{\ln\left(2e^{x}-1\right)}{e^{x}-1}dx \\ \overset{x\,\mapsto\,-\ln(1-x)}{=}&\int_{0}^{1}\frac{\ln\left(2e^{-\ln\left(1-x\right)}-1\right)}{e^{-\ln\left(1-x\right)}-1}\cdot\frac{1}{1-x}dx \\ &= 2\int_{0}^{1}\frac{\operatorname{artanh}x}{x}dx \\ &\overset{\clubsuit}{=} \int_{-1}^{1}\frac{\operatorname{artanh}x}{x}dx \\ \end{align} $$

where at $\clubsuit$ we use the fact that $\displaystyle \frac{\operatorname{artanh} x}{x}$ is even.

Next, we define a holomorphic function $f: \mathbb{C}\,\setminus ((-\infty,-1] \cup [1,\infty)) \to \mathbb{C}$ where $\displaystyle z \mapsto \frac{\operatorname{artanh}z}{z}$. This function employs the usual principal branch, specifically $\displaystyle\operatorname{Arg}\left(\frac{1+z}{1-z}\right) \in (-\pi, \pi]$. Additionally, this function's domain includes $z = 0$ because that element is a removable singularity. One can prove this by redefining $\operatorname{artanh}(z)$ as its Maclaurin series and making it analytic in a neighborhood of $z=0$. This removes the need for some circular indent around that point.

Next, we define a counterclockwise contour $\mathcal{C} = [r-1,1-r] \cup \gamma_1 \cup \Gamma \cup \gamma_{-1}$ where

$$ \begin{align} \gamma_1 &:= \left\{1-re^{-it}: t\in \left[0,\arcsin\left(\frac{\sqrt{4-r^{2}}}{2}\right)\right]\right\} \\ \Gamma &:= \left\{e^{it}: t \in \left[\arccos\left(1-\frac{r^{2}}{2}\right),\pi-\arccos\left(1-\frac{r^{2}}{2}\right)\right]\right\} \\ \gamma_{-1} &:= \left\{re^{-it}-1: t \in \left[-\arcsin\left(\frac{\sqrt{4-r^{2}}}{2}\right),0\right]\right\}\\ \end{align} $$

with the restriction $0 < r \ll 1$.

Here is a visual using the standard domain coloring with shading.

enter image description here

(IDK why my PC misaligns that "color break", or however you call it, on the left side. Must be a compiling glitch🤦‍♂️)

I'll briefly explain how we can come up with these subsets of the contour and skip the messy algebra and geometry.

(1) We find the intersections of the circles $x^2+y^2=1$, $(x-1)^2+y^2=r^2$, and $(x+1)^2+y^2=r^2$. They are $\left(\frac{r^{2}}{2}-1,\frac{r}{2}\sqrt{4-r^{2}}\right)$, $\left(1-\frac{r^{2}}{2},\frac{r}{2}\sqrt{4-r^{2}}\right)$, $\left(\frac{r^{2}}{2}-1,-\frac{r}{2}\sqrt{4-r^{2}}\right)$, and $\left(1-\frac{r^{2}}{2},-\frac{r}{2}\sqrt{4-r^{2}}\right)$. Only the first two are relevant.

(2) To find how many radians we need to connect $\gamma_1$ and $\gamma_{-1}$ to $\Gamma$, we construct four right triangles such that their top vertices touch where the contours should intersect.

(3) We assign each triangle a variable, say $\theta$ or something, and solve for each variable via trigonometry. E.G. one of the triangles on the far left can have a $\theta$ next to the point $z=-1$, and we find that the amount of radians needed to connect $\gamma_{-1}$ and $\Gamma$ is $\displaystyle \theta = \arcsin\left(\frac{\sqrt{4-r^{2}}}{2}\right)$ obtained from $\displaystyle \sin(\theta) = \frac{\frac{r}{2}\sqrt{4-r^{2}}}{r}$.

Here is a visual of what's happening.

enter image description here

To convince myself I didn't make some silly algebra mistake somewhere, I programmed a manual animation of how the contour behaves as each radius $r \to 0^+$. You can view it here. In that link, when you drag the $r$ slider, the contour maintains its shape as a closed contour along with the right triangles.

Getting that contour construction business out of the way, we express the contour integral over $\mathcal{C}$ as

$$ \oint_{\mathcal{C}} f = \int_{r-1}^{1-r}f + \int_{\gamma_1}f + \int_{\Gamma}f + \int_{\gamma_{-1}}f \,. $$

We recover $\mathcal{I}$ by equating the real part on both sides and then applying $r \to 0^+$ on both sides as follows:

$$ \lim_{r\,\to\,0^+}\Re\oint_{\mathcal{C}} f = \mathcal{I} + \lim_{r\,\to\,0^+}\Re\int_{\gamma_1}f + \lim_{r\,\to\,0^+}\Re\int_{\Gamma}f + \lim_{r\,\to\,0^+}\Re\int_{\gamma_{-1}}f \,. $$

To evaluate $\displaystyle \lim_{r\,\to\,0^+}\Re\int_{\gamma_1}f$, we'll prove that the modulus of $\displaystyle \Re\int_{\gamma_{-1}}f$ goes to $0$ as $r \to 0^+$.

Proof. Let $\displaystyle z \in \left\{re^{-it}-1: t \in \left[-\arcsin\left(\frac{\sqrt{4-r^{2}}}{2}\right),0\right]\right\}$ and bound $|f|$ like this:

$$ \begin{align} |f| &= \left|\frac{\operatorname{artanh}z}{z}\right| \\ &\leq \frac{1}{2\left|z\right|}\left(\left|\ln\left|\frac{1+z}{1-z}\right|\right|+\left|i\operatorname{Arg}\left(\frac{1+z}{1-z}\right)\right|\right) \\ &\overset{z\,\in\,\gamma_{-1}}{=} \frac{1}{2\left|re^{-it}-1\right|}\left(\left|\ln\left|\frac{1+re^{-it}-1}{1-re^{-it}+1}\right|\right|+\left|\operatorname{Arg}\left(\frac{1+re^{-it}-1}{1-re^{-it}+1}\right)\right|\right) \\ &= \frac{1}{2\left|re^{-it}-1\right|}\left(\left|\ln\left|\frac{re^{-it}}{2-re^{-it}}\right|\right|+\left|\operatorname{Arg}\left(\frac{re^{-it}}{2-re^{-it}}\right)\right|\right) \\ &\leq \frac{1}{2\left(1-r\right)}\left(\ln\sqrt{r^{2}\sin^{2}t+\left(2-r\cos t\right)^{2}}-\ln r+\pi\right)\,. \\ \end{align} $$

Note that the arc length of $\gamma_{-1}$ is $\displaystyle r \arcsin\left(\frac{\sqrt{4-r^{2}}}{2}\right)$, obtained from the set-builder notation of $\gamma_{-1}$ and the usual arc length formula for circles.

Using these two results, we use the Estimation Lemma and get

$$ 0 \leq \left|\Re \int_{\gamma_{-1}}f\right| \leq \left|\int_{\gamma_{-1}}f\right| \leq \frac{1}{2\left(1-r\right)}\left(\ln\sqrt{r^{2}\sin^{2}t+\left(2-r\cos t\right)^{2}}-\ln r+\pi\right)\cdot r\arcsin\left(\frac{\sqrt{4-r^{2}}}{2}\right)\,. \\ $$

Taking $r \to 0^+$ on the upper bound, we get

$$ \lim_{r\,\to\,0^+}\frac{1}{2\left(1-r\right)}\left(\ln\sqrt{r^{2}\sin^{2}t+\left(2-r\cos t\right)^{2}}-\ln r+\pi\right)\cdot r\arcsin\left(\frac{\sqrt{4-r^{2}}}{2}\right) = 0\,. $$

By the Squeeze Theorem, we get

$$ \lim_{r\,\to\,0^+}\left|\Re \int_{\gamma_{-1}}f\right| = 0\,. $$

This leads to

$$ \lim_{r\,\to\,0^+}\Re \int_{\gamma_{-1}}f = 0 $$

and we're done with the integral evaluation! Q.E.D.

Similarly, we can prove that

$$\lim_{r\,\to\,0^+}\Re\int_{\gamma_1}f = 0$$

which I'll leave as an exercise (More like I'm too lazy to type the proof :P).

Next, we evaluate the contour integral over $\Gamma$ as follows. Let $\displaystyle z \in \left\{e^{it}: t \in \left[\arccos\left(1-\frac{r^{2}}{2}\right),\pi-\arccos\left(1-\frac{r^{2}}{2}\right)\right]\right\}$. Then

$$ \begin{align} \lim_{r\,\to\,0^+} \Re \int_{\Gamma}f &\overset{z\,\in\,\Gamma}{=} \lim_{r\,\to\,0^+}\Re \int_{\arccos\left(1-\frac{r^{2}}{2}\right)}^{\pi-\arccos\left(1-\frac{r^{2}}{2}\right)}\frac{\operatorname{artanh}\left(e^{it}\right)}{e^{it}}\cdot ie^{it}dt \\ &= -\frac{1}{2}\lim_{r\,\to\,0^+} \Im \int_{\arccos\left(1-\frac{r^{2}}{2}\right)}^{\pi-\arccos\left(1-\frac{r^{2}}{2}\right)}\left(\ln\left|\frac{1+e^{it}}{1-e^{it}}\right|+i\operatorname{Arg}\left(\frac{1+e^{it}}{1-e^{it}}\right)\right)dt \\ &= -\frac{1}{2}\lim_{r\,\to\,0^+}\int_{\arccos\left(1-\frac{r^{2}}{2}\right)}^{\pi-\arccos\left(1-\frac{r^{2}}{2}\right)}\operatorname{Arg}\left(i\cot\left(\frac{t}{2}\right)\right)dt \\ &= -\frac{1}{2}\lim_{r\,\to\,0^+}\int_{\arccos\left(1-\frac{r^{2}}{2}\right)}^{\pi-\arccos\left(1-\frac{r^{2}}{2}\right)}\frac{\pi}{2}dt \\ &= -\frac{1}{2}\int_{0}^{\pi}\frac{\pi}{2}dt \\ &= -\frac{\pi^{2}}{4} \,. \end{align} $$

For $\displaystyle \oint_{\mathcal{C}}f$, it equals $0$ by Cauchy's Integral Theorem.

Gathering all the results together, we have

$$ \require{cancel}\cancelto{0}{\oint_{\mathcal{C}}f} = \mathcal{I} + \cancelto{0}{\lim_{r\,\to\,0^+}\Re\int_{\gamma_1}f} -\frac{\pi^{2}}{4} + \cancelto{0}{\lim_{r\,\to\,0^+}\Re\int_{\gamma_{-1}}f}\,. $$

We finally conclude with

$$ \bbox[#f2ebe6,border: 5px inset#765341,10px]{\int_{0}^{\infty}\frac{\ln\left(2e^{x}-1\right)}{e^{x}-1}dx=\frac{\pi^{2}}{4}} $$

and we're done!


Solution 3 (Incomplete)

Let $\displaystyle x \mapsto \ln\left(\frac{e^{x}+1}{2}\right)$. Then

$$ \begin{align} \mathcal{I} &:= \int_{0}^{\infty}\frac{\ln\left(2e^{x}-1\right)}{e^{x}-1}dx \\ &\overset{x\,\mapsto\,\ln\left(\frac{e^{x}+1}{2}\right)}{=} \int_{0}^{\infty}\frac{\ln\left(2e^{\ln\left(\frac{e^{x}+1}{2}\right)}-1\right)}{e^{\ln\left(\frac{e^{x}+1}{2}\right)}-1}\cdot\frac{e^{x}}{e^{x}+1}dx \\ &= \int_{0}^{\infty}\frac{2xe^{x}}{e^{2x}-1}dx \\ &= \int_{-\infty}^{\infty}\frac{xe^{x}}{e^{2x}-1}dx \\ &= \frac{1}{2}\int_{-\infty}^{\infty}x\operatorname{csch}xdx\,. \\ \end{align} $$

Define a holomorphic function $f: \mathbb{C} \,\setminus (\mathbb{Z}\setminus \left\{0\right\}) \to \mathbb{C}$ where $z \mapsto z \operatorname{csch} z$. Here is a visual down below.

enter image description here

If you choose to try this out, I'll finish this answer. You would eventually finish with

$$ \bbox[#FFF6F7,border: 5px dashed#CC0B1B,11.5px]{\int_{0}^{\infty}\frac{\ln\left(2e^{x}-1\right)}{e^{x}-1}dx=\frac{\pi^{2}}{4}} $$

and be done!


$\endgroup$
2
  • 1
    $\begingroup$ Omg, my phone got stuck when scrolling down. (+1) tough, if I can get it. $\endgroup$
    – Bob Dobbs
    Commented Jun 11 at 17:32
  • $\begingroup$ @BobDobbs Lol yes, I've noticed that for longer posts like this one, my phone also takes a while to load them, probably because there's so much Mathjax to render $\endgroup$ Commented Jun 11 at 17:36
6
$\begingroup$

We are now evaluating the following integral: $$ \int_{0}^{\infty} \frac {\ln \left( 2 {e}^{x} - 1 \right)}{{e}^{x} - 1} \text {d} x = \, ? $$ My first observation is $$ 2 {e}^{x} - 1 = {e}^{2 x} - {\left( {e}^{x} - 1 \right)}^{2}. $$ I am not sure if this is relevant. Anyway, it looks like ${e}^{x} \mapsto x$ is a good substitution. So $x \mapsto \ln \left( x \right)$, and $\text {d} x \mapsto \text {d} x / x$. As a consequence, $$ \int_{0}^{\infty} \frac {\ln \left( 2 {e}^{x} - 1 \right)}{{e}^{x} - 1} \text {d} x = \int_{1}^{\infty} \frac {\ln \left( 2 x - 1 \right)}{x \left( x - 1 \right)} \text {d} x. $$ Next, we perform the substitution: $x \mapsto 1 / x$, so $\text {d} x \mapsto - \text {d} x / {x}^{2}$. Accordingly, $$ \int_{1}^{\infty} \frac {\ln \left( 2 x - 1 \right)}{x \left( x - 1 \right)} \text {d} x = \int_{0}^{1} \frac {\ln \left( 2 - x \right)}{1 - x} \text {d} x - \int_{0}^{1} \frac {\ln \left( x \right)}{1 - x} \text {d} x. $$ Let $x \mapsto 1 - x$, so $$ \int_{0}^{1} \frac {\ln \left( 2 - x \right)}{1 - x} \text {d} x = \int_{0}^{1} \frac {\ln \left( 1 + x \right)}{x} \text {d} x $$ and $$ \int_{0}^{1} \frac {\ln \left( x \right)}{1 - x} \text {d} x = \int_{0}^{1} \frac {\ln \left( 1 - x \right)}{x} \text {d} x. $$ Both of the remaining integrals are classic. Recall $$ \ln \left( 1 - t \right) = - \sum_{k \ge 1} \frac {{t}^{k}}{k}. $$ This is the Maclaurin series representation for the natural logarithm. Let $t = a x$, so $$ \frac {\ln \left( 1 - a x \right)}{x} = - \sum_{k \ge 1} \frac {{a}^{k}}{k} \cdot {x}^{k - 1}. $$ Integrate both sides: $$ \int_{0}^{1} \frac {\ln \left( 1 - a x \right)}{x} \text {d} x = - \sum_{k \ge 1} \frac {{a}^{k}}{{k}^{2}}. $$ If $a = 1$, then $$ \int_{0}^{1} \frac {\ln \left( 1 - x \right)}{x} \text {d} x = - \sum_{k \ge 1} \frac {1}{{k}^{2}} = - \frac {{\pi}^{2}}{6}. $$ Above, we have used the well-known answer to the Basel problem. Linked is a derivation; specifically, it is Tom Apostol's derivation, which is my personal favourite.

If $a = -1$, then $$ \begin{align} \int_{0}^{1} \frac {\ln \left( 1 + x \right)}{x} \text {d} x & = - \sum_{k \ge 1} \frac {{\left( - 1 \right)}^{k}}{{k}^{2}} \\ & = - \sum_{k \ge 1} \frac {1}{{\left( 2 k \right)}^{2}} + \sum_{k \ge 1} \frac {1}{{\left( 2 k + 1 \right)}^{2}} \\ & = - \sum_{k \ge 1} \frac {2}{{\left( 2 k \right)}^{2}} + \sum_{k \ge 1} \frac {1}{{k}^{2}} \\ & = \frac {1}{2} \sum_{k \ge 1} \frac {1}{{k}^{2}} \\ & = \frac {{\pi}^{2}}{12}. \end{align} $$ So, finally, $$ \int_{0}^{\infty} \frac {\ln \left( 2 {e}^{x} - 1 \right)}{{e}^{x} - 1} \text {d} x = \frac {{\pi}^{2}}{12} + \frac {{\pi}^{2}}{6} = \boxed {\frac {{\pi}^{2}}{4}}. $$ I am not sure if all of this can possibly be done within 5 minutes. (I personally can't: I am typically slow. I am not built for mathematical competitions.)

$\endgroup$
6
$\begingroup$

$$\begin{align} I&=\int_0^\infty\frac{\ln(2e^x-1)}{e^x-1}dx\\ &\stackrel{x=\ln(\tfrac{u+1}2)}{=}\int_1^\infty\frac{2\ln u}{u^2-1}du\\ &\stackrel{u=\frac1v}{=}\int_0^1\frac{2\ln v}{v^2-1}dv\\ &\stackrel{v=e^{-y}}{=}\int_0^\infty\frac{2ye^y}{e^{2y}-1}dy\\ &=\int_0^\infty\frac{2y}{e^y+1}dy+\int_0^\infty\frac{2y}{e^{2y}-1}dy\\ &=2\eta(2)+\frac12\zeta(2)\\ &=2(\tfrac{\pi^2}{12})+\frac12(\tfrac{\pi^2}6)\\ &=\frac{\pi^2}4. \end{align}$$ where $\eta(s)$ and $\zeta(s)$ are the famous Dirichlet eta and Rieamann zeta functions.

$\endgroup$
5
$\begingroup$

You can proceed with your last attempted integral as follows, though note that you had omitted a factor of $2$.

Substitutions:

$$\int_0^\infty \frac{\log(x+1)}{x(x+2)} \, dx \stackrel{x\to x-1}= \int_1^\infty \frac{\log x}{(x-1)(x+1)} \stackrel{x\to\tfrac1x}= \int_0^1 \frac{\log x}{x^2-1} \, dx$$

Series:

$$- \sum_{n\ge0} \int_0^1 x^{2n} \log x \, dx = \sum_{n\ge0} \frac1{(2n+1)^2}$$

The last sum is easy if you're familiar with the Basel problem.

$\endgroup$
0
2
$\begingroup$

Let’s consider the parametrised integral $$ I(a)=\int_0^{\infty} \frac{\ln \left(a\left(e^x-1\right)+1\right)}{e^x-1} d x $$ Differentiating $I(a)$ w.r.t. $a$ yields $$ \begin{aligned} I^{\prime}(a) & =\int_0^{\infty} \frac{e^{-x}}{a+(1-a) e^{-x}} d x \\ & =\frac{1}{a-1}\left[\ln \left(a+(1-a) e^{-x}\right)\right]_0^{\infty} \\ & =\frac{\ln a}{a-1} \end{aligned} $$ Integrating back, we have $$ \int_0^{\infty} \frac{\ln \left(2e^x-1\right)}{e^x-1} d x =I(2)-I(0) =\int_0^2 \frac{\ln a}{a-1} d a \stackrel{u=a-1}{=} \int_{-1}^1 \frac{\ln (u+1)}{u} d u=\frac{\pi^2}{4} $$

$\endgroup$

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .