1
$\begingroup$

I have to calculate the following integral:

$$ \int \left( \prod_{i \neq j =1}^N |\vec{x_i}-\vec{x_j}| \right) \delta({\sum_{i=1}^N |\vec{x_i}|^2 - 1}) d^3x_1 d^3x_2 \cdots d^3x_N $$

where $N$ is a large number, $\delta$ is a delta Dirac function that gives us the condition, $\vec{x_i}$ is a cartesian vector, and $|\vec{x_i}-\vec{x_j}|$ means the norm of vector $\vec{x_i}-\vec{x_j}$. $i \neq j $ so this integral is not zero. I think I can write the above integral on the surface of a $3N$-dimensional unit ball just by renaming, but I don't know if it helps me or not! thank you for your help, regards.

$\endgroup$
2
  • $\begingroup$ By $\prod\limits^N_{i\ne j = 1}$, do you mean $\prod\limits_{i=1}^N \prod\limits_{j=1,\ne i}^N$ or $\prod\limits_{1\le i < j\le N} = \prod\limits_{i=1}^{N-1}\prod\limits_{j=i+1}^{N}$? $\endgroup$ Commented Jan 28 at 22:24
  • $\begingroup$ @achillehui yes i mean $$ \prod_{i=1}^N \prod_{j =1, \neq i}^N $$ $\endgroup$ Commented Jan 29 at 8:59

1 Answer 1

1
$\begingroup$

Disclaimer - this treatment is not mathematical rigorous and I evaluate the integral in a physicist manner. The end result is a formula for small $n$, one can derive the result with help of a CAS.


$\delta(x)$ isn't an ordinary function but a distribution. Since I don't know distribution, I will treat it as the limit of some sort of Gaussian peaks:

$$\delta(x) = \lim_{\epsilon\to 0} \delta_\epsilon(x)\quad\text{ where }\quad \delta_\epsilon(x) =\frac{1}{\sqrt{2\pi \epsilon^2} } e^{-\frac{x^2}{2\epsilon^2}}$$

I will also adopt physicists' way of writing integral.

Let $\Omega_n$ be your integral. Instead of $\Omega_n$, consider following integral $$F_n(\lambda) = \int\prod_k d^3 x_k\;e^{-\lambda \sum_k|x_k|^2}\prod_{i<j}|x_i-x_j|^2 $$

Using following integral representation

$$e^{-\lambda \sum_k|x_k|^2} = \lim_{\epsilon\to 0} \int_0^\infty dt e^{-\lambda t} \delta_\epsilon\left(\sum_k|x_k|^2-t\right)$$ We have $$\begin{align} F_n(\lambda) &= \lim_{\epsilon\to 0}\int_0^\infty dt e^{-\lambda t} \int \prod_k d^3x_k \delta_\epsilon\left(\sum_k |x_k|^2 - t\right) \prod_{i<j}|x_i-x_j|^2\\ &= \lim_{\epsilon\to 0}\int_0^\infty dt e^{-\lambda t} \int \prod_k d^3x_k \frac1t\delta_\frac{\epsilon}{t}\left(\sum_k \frac{|x_k|^2}{t} - 1\right) \prod_{i<j}|x_i-x_j|^2 \end{align} $$ Change variable to $y_k = \frac{x_k}{\sqrt{t}}$, we find

$$F_n(\lambda) = \lim_{\epsilon\to 0}\int_0^\infty dt\, t^{\frac{n(n+2)}{2} - 1} e^{-\lambda t} \int \prod_k d^3y_k \delta_\epsilon\left(\sum_k |y_k|^2 - 1\right)\prod_{i<j}|y_i - y_j|^2$$ and hence $$\Omega_n = \frac{\lambda^{\frac{n(n+2)}{2}}}{\Gamma\left(\frac{n(n+2)}{2}\right)}F_n(\lambda)\tag{*1} $$ Let $\beta_{ij} = \beta_{ji}$ for $1 \le i < j \le n$ be $\frac{n(n-1)}{2}$ parameters. Let $\alpha_k = \sum_{j\ne k} \beta_{kj}$ for $k = 1,\ldots, n$.

Consider following Gaussian integrals

$$G_n(\lambda,\beta_{ij}) \stackrel{def}{=} \int \prod_k d^3 x_k e^{-\lambda \sum_k |x|^2 + \sum_{i<j}\beta_{ij}|x_i - x_j|^2} = \pi^{\frac{3n}{2}} \Lambda_n(\lambda-\alpha,\beta)^{-3/2} $$ where $\Lambda_n(\lambda-\alpha,\beta)$ is the determinant $$\left| \begin{matrix} \lambda - \alpha_1 & \beta_{12} & \beta_{13} & \cdots\\ \beta_{12} & \lambda - \alpha_2 & \beta_{23} & \cdots\\ \vdots & \vdots & \ddots & \vdots\\ \beta_{1\,n-1} & \beta_{2\,n-1} & \cdots & \lambda - \alpha_n \end{matrix} \right|$$ It is easy to see $\displaystyle\;F_n(\lambda) = \left. \left(\prod_{i<j} \frac{\partial}{\partial \beta_{ij}}\right) G_n(\lambda,\beta_{ij})\right|_{\beta = 0}\;$

Plug this into $(*1)$ and set $\lambda$ to $1$, we obtain a formula for $\Omega_n$. $$\Omega_n = \frac{\pi^{\frac{3n}{2}}}{\Gamma\left(\frac{n(n+2)}{2}\right)} \left.\left(\prod_{i<j} \frac{\partial}{\partial \beta_{ij}}\right) \Lambda_n(1 - \alpha, \beta)^{-3/2}\right|_{\beta=0}$$

As a double check, let us evaluate this for $n = 2$ and $3$, we find $$\begin{align} \Omega_2 & = \frac{\pi^3}{\Gamma(4)}\left.\frac{\partial}{\partial \beta} \left|\begin{matrix} 1 - \beta & \beta \\ \beta & 1 - \beta \end{matrix}\right|^{-3/2}\right|_{\beta=0}\\ & = \frac{\pi^3}{3!}\times 3 = \frac{\pi^3}{2}\\ \Omega_3 &= \frac{\pi^{\frac92}}{\Gamma(\frac{15}{2})}\left.\frac{\partial^3}{\partial u\partial v\partial w} \left|\begin{matrix} 1 - u - v & u & v \\ u & 1 - u - w & w \\ v & w & 1 - v - w \end{matrix}\right|^{-3/2}\right|_{u=v=w=0}\\ &= \frac{\pi^{\frac92}}{\Gamma(\frac{15}{2})}\times \frac{75}{2} = \frac{320\pi^4}{9009} \end{align} $$ which reproduce the values of $\Omega_2$ and $\Omega_3$ I obtained by evaluating the original integrals by hand.


Let me repeat once again: this is not mathematical rigorous. Even from a physicist standpoint, if one want to use this, one should at least compute $\Omega$ for other small $n$ by hand or Monte Carlo and see whether this formula produces correct number.

For larger $n$, one probably need to derive a diagrammatic expansion of above determinant to make evaluation of above formula practical.

$\endgroup$
1
  • $\begingroup$ thank you very much. $\endgroup$ Commented Jan 30 at 10:54

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .