1
$\begingroup$

So this is what I am trying to prove $\frac{(\sum_i w_i x_i)}{(\sum_i w_i y_i^2)} \leq \sum_i w_i \frac{x_i}{y_i^2}$, where $w_i \geq 1$, $x_i>0$, and $y_i>0$.

I have no idea where to begin with, I have scoured many inequalities like Cauchy–Schwarz inequality, Titu's lemma or to begin like this $\frac{\sum_i x_i}{\sum_i y_i} \leq \max_i\frac{x_i}{y_i}$. I am not even sure this lemma can be prove. So any help is appreciated.

$\endgroup$

1 Answer 1

2
$\begingroup$

Since $w_i\geqslant 1$ for all $i$, for non-negative numbers $t_i$, \begin{align*}\Bigl(\sum_{i=1}^\infty w_it_i\Bigr)^2 & =\sum_{i,j=1}^\infty w_iw_jt_it_j = \sum_{i=1}^\infty w_i^2t_i^2 +\sum_{i=1}^\infty\sum_{i\neq j=1}^\infty w_iw_jt_it_j \\ & \geqslant \sum_{i=1}^\infty w_i^2t_i^2 \geqslant \sum_{i=1}^\infty w_it_i^2. \end{align*}

Taking square roots gives $$\Bigl(\sum_{i=1}^\infty w_it_i^2\Bigr)^{1/2}\leqslant \sum_{i=1}^\infty w_it_i.$$ This is just a special case of the fact that the weighted $\ell_p(w)$ norm is not less than the weighted $\ell_q(w)$ norm when $1\leqslant p<q$ when all weights are at least $1$.

EDIT: This paragraph uses Cauchy-Schwarz on the weighted Hilber space $\ell_2(w)$ whose inner product is $\langle (a_i),(b_i)\rangle=\sum_i a_ib_i$. In this case, $\|a\|2=\langle a,a\rangle=\sum_i w_i|a_i|^2$. The Cauchy-Schwarz inequality is valid for any inner product, including the weighted one, and says $|\langle a,b\rangle|\leqslant \|a\|\|b\|$).

Using Cauchy-Schwarz and then this inequality, we have \begin{align*}\sum_{i=1}^\infty w_ix_i & = \sum_{i=1}^\infty w_i y_i^2 \cdot (x_i/y_i^2) \leqslant \Bigl(\sum_{i=1}^\infty w_i (y_i^2)^2\Bigr)^{1/2}\Bigl(\sum_{i=1}^\infty w_i(x_i/y_i^2)^2\Bigr)^{1/2} \\ & \leqslant \Bigl(\sum_{i=1}^\infty w_iy_i^2\Bigr)\Bigl(\sum_{i=1}^\infty w_i(x_i/y_i^2)\Bigr).\end{align*}

Below I'll give a proof that usual Cauchy-Schwarz on the usual inner product, rather than the weighted one. But it's a good idea to know about the full strength and realm of applicability of Cauchy-Schwarz.

Using Cauchy-Schwarz and then this inequality, we have \begin{align*}\sum_{i=1}^\infty w_ix_i & = \sum_{i=1}^\infty \sqrt{w_i} y_i^2 \cdot (\sqrt{w_i}x_i/y_i^2) \leqslant \Bigl(\sum_{i=1}^\infty (\sqrt{w_i} y_i^2)^2\Bigr)^{1/2}\Bigl(\sum_{i=1}^\infty (\sqrt{w_i}x_i/y_i^2)^2\Bigr)^{1/2} \\ & = \Bigl(\sum_{i=1}^\infty w_i(y_i^2)^2\Bigr)^{1/2}\Bigl(\sum_{i=1}^\infty w_i(x_i/y_i^2)^2\Bigr)^{1/2}\leqslant \Bigl(\sum_{i=1}^\infty w_iy_i^2\Bigr)\Bigl(\sum_{i=1}^\infty w_i(x_i/y_i^2)\Bigr).\end{align*}

$\endgroup$
5
  • $\begingroup$ @user224263 : thanks for your nice idea, I have a question: in the line one 5th under sigma must not be $i \neq j$ ? $$\begin{align*}\Bigl(\sum_{i=1}^\infty w_it_i\Bigr)^2 & =\sum_{i,j=1}^\infty w_iw_jt_it_j = \sum_{i=1}^\infty w_i^2t_i^2 +\sum_{i=1}^\infty\sum_{i\neq =1}^\infty w_iw_jt_it_j \\ & \geqslant \sum_{i=1}^\infty w_i^2t_i^2 \geqslant \sum_{i=1}^\infty w_it_i^2. \end{align*}$$ $\endgroup$
    – Khosrotash
    Commented Dec 31, 2023 at 14:26
  • $\begingroup$ Yes, thank you. I missed the $j$ between the $\neq$ and the $=$. $\endgroup$
    – user114263
    Commented Dec 31, 2023 at 14:29
  • $\begingroup$ you're welcome, you deserve the question. $\endgroup$
    – Khosrotash
    Commented Dec 31, 2023 at 14:37
  • $\begingroup$ Please clarify following step $\begin{align*} \sum_{i=1}^\infty w_i y_i^2 \cdot (x_i/y_i^2) \leqslant \Bigl(\sum_{i=1}^\infty w_i (y_i^2)^2\Bigr)^{1/2}\Bigl(\sum_{i=1}^\infty w_i(x_i/y_i^2)^2\Bigr)^{1/2} \end{align*}$, how is $w_i$ present in both the summation and also not squared? @user114263 $\endgroup$
    – coolname11
    Commented Jan 1 at 11:59
  • $\begingroup$ It's Cauchy-Schwarz with the inner product $\langle a,b\rangle=\sum_i w_ia_ib_i$. $\endgroup$
    – user114263
    Commented Jan 1 at 13:48

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .