5
$\begingroup$

If $a,b,c\ge 0: ab+bc+ca=3$ then prove that: $$\sqrt{2a+3bc}+\sqrt{2b+3ca}+\sqrt{2c+3ab}\ge 3\sqrt{5}.$$

I've tried to use AM-GM and Holder without success.

Indeed, by AM-GM for three numbers $$\sqrt{2a+3bc}+\sqrt{2b+3ca}+\sqrt{2c+3ab}\ge 3\sqrt[6]{(2a+3bc)(2b+3ca)(2c+3ab)}$$ and we need to prove $$(2a+3bc)(2b+3ca)(2c+3ab)\ge 125$$ I check it is wrong when $a=b=\sqrt{3}; c=0.$

Also by Holder, $$\left(\sum_{cyc}\sqrt{2a+3bc}\right)^2\cdot \sum_{cyc}\frac{(b+c+xa)^3}{2a+3bc}\ge (x+2)^3(a+b+c)^3$$ I was stuck to find $x$ satisfying $$(x+2)^3(a+b+c)^3\ge 45\cdot \sum_{cyc}\frac{(b+c+xa)^3}{2a+3bc}$$ since equality occurs when $a=b=c=1.$

I think there is a better Holder using but I've not found it so far.


Update $1:$ I tried AM-GM $$\sqrt{2a+3bc}=\frac{2a+3bc}{\sqrt{2a+3bc}}\ge \frac{2(2a+3bc)}{\dfrac{2a+3bc}{a+tbc}+a+tbc}$$but it's not smooth.

$\endgroup$
11
  • 4
    $\begingroup$ I think you can simplify your issue by getting rid of coefficients $2$ and $3$ ; just set $a'=a/k,b'=b/k,c'=c/k$ for a certain constant $k$ such that $2k=3k^2 \iff k=\sqrt{2/3}$. Your inequality will become $\sqrt{a'+b'c'}+\sqrt{b'+c'a'}+\sqrt{c'+a'b'} \ge ...$. $\endgroup$
    – Jean Marie
    Commented Nov 28, 2023 at 8:59
  • 2
    $\begingroup$ @JeanMarie I don't think so. $\endgroup$
    – TATA box
    Commented Nov 29, 2023 at 1:08
  • 2
    $\begingroup$ consider "isolated fudging" yufeizhao.com/olympiad/wc08/ineq.pdf $\endgroup$
    – vallev
    Commented Nov 29, 2023 at 2:55
  • 1
    $\begingroup$ @TATA box What do you mean by "I don't think so" ? $\endgroup$
    – Jean Marie
    Commented Nov 29, 2023 at 9:26
  • 1
    $\begingroup$ @TATA box : it becomes $a'b'+b'c'+c'a'=2$. $\endgroup$
    – Jean Marie
    Commented Nov 29, 2023 at 11:17

1 Answer 1

2
+50
$\begingroup$

Proof.

The desired inequality is written as $$\sqrt{\frac{2a + 3bc}{5}} + \sqrt{\frac{2b + 3ca}{5}} + \sqrt{\frac{2c + 3ab}{5}} \ge 3. \tag{1}$$

By AM-GM, we have $$\sqrt{\frac{2a + 3bc}{5}} = \frac{12(2a + 3bc)}{2\sqrt{180(2a + 3bc)}} \ge \frac{12(2a + 3bc)}{\frac{180(2a + 3bc)}{25 + 5bc} + (25 + 5bc)}. \tag{2}$$

From (1) and (2), it suffices to prove that $$\sum_{\mathrm{cyc}} \frac{12(2a + 3bc)}{\frac{180(2a + 3bc)}{25 + 5bc} + (25 + 5bc)} \ge 3. \tag{3}$$

We use the pqr method.

Let $p = a + b + c, q = ab + bc + ca = 3, r = abc$. We have $$p \ge 3, \quad 0 \le r \le 1, \quad r \ge \frac{12p - p^3}{9}. \tag{4}$$ (Note: $r \ge \frac{12p - p^3}{9}$ follows from the degree three Schur inequality $r \ge \frac{4pq - p^3}{9}$.)

(3) is equivalently written as $$775r^4 + m_3 r^3 + m_2 r^2 + m_1 r + m_0 \ge 0 \tag{5}$$ where \begin{align*} m_3 &= 200p^2 + 16510p + 3360, \\ m_2 &= 7840p^3 + 6115p^2 - 4720p + 672952, \\ m_1 &= 788768p^2 - 1388944p - 3990360, \\ m_0 &= 16000p + 29308. \end{align*}

It suffices to prove that (5) is true for all $p, r$ satisfying (4).

Since $m_3, m_2, m_0 \ge 0$, we only need to prove the case that $m_1 < 0$ which implies $p < 2\sqrt{3}$. Thus, $r \ge \frac{12p - p^3}{9} \ge 0$. Let $r_1 := \frac{12p - p^3}{9}$. We have \begin{align*} &775r^4 + m_3 r^3 + m_2 r^2 + m_1 r + m_0\\ \ge{}& 775r_1^4 + m_3 r_1^3 + m_2 r_1^2 + m_1 + m_0 \\ ={}& \frac{1}{6561}(p - 3)g(p)\\ \ge{}& 0 \end{align*} where \begin{align*} g(p) &:= 775\,{p}^{11}+525\,{p}^{10}-184215\,{p}^{9}+116955\,{p}^{8}+6865020\,{ p}^{7}\\ &\qquad +5282820\,{p}^{6}-11077668\,{p}^{5}+57435156\,{p}^{4}-791753940 \,{p}^{3}\\ &\qquad -2378061180\,{p}^{2}+5890235436\,p+8662820724. \end{align*}

We are done.

$\endgroup$
0

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .