0
$\begingroup$

Prove that the sum of $n$ integers starting from $n$ has the recurrence $a_{n-1}+3n-2;\quad a_0=0$
$$\sum_{i=n}^{2n-1}i=a_{n-1}+3n-2\quad n\in\mathbb{N} \tag{EQ 1}$$ Examples:$$n=1 \qquad \sum_{i=1}^{2\cdot (1)-1}i=1 \qquad a_{1-1}+3\cdot 1-2=0+3-2=1$$ $$n=2 \qquad \sum_{i=2}^{2\cdot (2)-1}i=(2+3) \qquad a_{2-1}+3\cdot 2-2=1+6-2=5$$ $$n=3 \qquad \sum_{i=3}^{2\cdot (3)-1}i=(3+4+5)\qquad a_{3-1}+3\cdot 3-2=5+9-2=12$$ This summation will make the pentagonal figurate numbers. Ignore that. Do not use $n(3n-1)/2.$ Prove that the summation is equivalent to the given recurrence using induction.

My attempt.
Show that EQ 1 is true for $n=1.$ This is already done in the Example.
Assume that EQ 1 is true for some arbitrary $k\in\mathbb{N}$ $$\left(\sum_{i=k}^{2k-1}i=a_{k-1}+3k-2\quad k\in\mathbb{N}\right)\longleftarrow \text{The inductive hypothesis}$$ Write "the form" for $a_{k+1}$ $$\sum_{i=k+1}^{2(k+1)-1}i = \left[a_{(k+1)-1}+3(k+1)-2\right] = a_k+3k+1$$ Pick the complicated side of "the form" and algebraically reduce it to get the other side. Usually the complicated side is the summation since it has more terms. $$\sum_{i=k+1}^{2(k+1)-1}i = \sum_{i=k}^{2k-1}i + (k+1) \tag{EQ 2}$$ This is where I am stuck. EQ 2 should be the kth term + the $(k+1)^{th}$ term. My next step would be to use the inductive hypothesis to replace the RHS summation term with $a_{k-1}+3k-2$ and then algebraically derive $a_k+3k+1$ but I am not believing that EQ 2 is correct, and if it is, I don't know how to do the algebra. What have I done wrong?

$\endgroup$
3
  • 1
    $\begingroup$ Try $a_n-a_{n-1}=\sum\limits_{i=n}^{2n-1} i - \sum\limits_{j=n-1}^{2n-3} j = (2n-2)+(2n-1)-(n-1) = 3n-2$ since the other terms in the sums cancel $\endgroup$
    – Henry
    Commented Aug 17, 2023 at 16:55
  • $\begingroup$ Shouldn't EQ $2\,$ be $\,\displaystyle\sum_{i=k+1}^{2(k+1)-1}i =\left( \sum_{i=k}^{2k-1}i\right) + (\color{red}3k+1) $? $\endgroup$ Commented Aug 17, 2023 at 16:56
  • $\begingroup$ @J.W.Tanner Yes. It might should be, but I can't justify why. Just because that would make the algebra work doesn't seem like a good reason to use that as the 2nd term. $\endgroup$
    – Narlin
    Commented Aug 17, 2023 at 17:01

1 Answer 1

1
$\begingroup$

I am not believing that EQ 2 is correct. What have I done wrong?

It's not correct. It should be

$$\sum_{i=k+1}^{2(k+1)-1}i = \sum_{i=k+1}^\color{blue}{2k+1}i =\left(\sum_{i=\color{brown}k}^{2k-1}i\right) + \bigg(\color{blue}{(2k+1)+2k}-\color{brown}k\bigg)=\left(\sum_{i=k}^{2k-1}i\right)+ (\color{red}3k+1) . $$

$\endgroup$

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .