17
$\begingroup$

I was able to find

$$\int_0^{\frac{\pi}{2}}x^2 \cot x\ln(1-\sin x)\mathrm{d}x=-\frac14\sum_{n=1}^\infty\frac{4^n}{{2n\choose n}}\frac{H_{2n}}{n^3}$$ $$=5\operatorname{Li}_4\left(\frac12\right)-\frac{65}{32}\zeta(4)-2\ln^2(2)\zeta(2)+\frac5{24}\ln^4(2)$$

by converting it to the sum above then evaluating this sum but many integrals and sums were involved in the calculations.

Do you have a different idea to find this integral or its sum?

$\endgroup$
3
  • 1
    $\begingroup$ I'm pretty interested on how you derived this answer. Mind showing? $\endgroup$
    – mils
    Commented Jan 26, 2023 at 6:08
  • $\begingroup$ Similar series (obtained with keyword "central binomial coefficient") : take a look at dias 33, 34 etc.here $\endgroup$
    – Jean Marie
    Commented Jan 26, 2023 at 10:27
  • $\begingroup$ @JeanMarie thanks Jean . I used some identities from there but I got the same integral in the post. $\endgroup$ Commented Jan 26, 2023 at 19:10

3 Answers 3

8
$\begingroup$

What's up Ali, it's been a while.

This is a solution for $\int _0^{\frac{\pi }{2}}x^2\cot \left(x\right)\ln \left(1-\sin \left(x\right)\right)\:dx$.

Note that: $$\int _0^{\frac{\pi }{2}}x^2\cot \left(x\right)\ln \left(1-\sin \left(x\right)\right)\:dx=4\int _0^1\frac{1-x^2}{x\left(1+x^2\right)}\arctan ^2\left(x\right)\ln \left(\frac{\left(1-x\right)^2}{1+x^2}\right)\:dx,$$ so let's evaluate the integral on the right: $$\int _0^1\frac{1-x^2}{x\left(1+x^2\right)}\arctan ^2\left(x\right)\ln \left(\frac{\left(1-x\right)^2}{1+x^2}\right)\:dx$$ $$=\frac{1}{12}\int _0^1\frac{1-x^2}{x\left(1+x^2\right)}\ln ^3\left(\frac{\left(1-x\right)^2}{1+x^2}\right)\:dx-\frac{2}{3}\operatorname{\mathfrak{R}} \left\{\int _0^1\frac{1-x^2}{x\left(1+x^2\right)}\ln ^3\left(\frac{1-x}{1-ix}\right)\:dx\right\}$$ $$=-\frac{7}{12}\int _0^1\frac{\ln ^3\left(x\right)}{1-x}\:dx+\frac{2}{3}\operatorname{\mathfrak{R}} \left\{\int _0^1\frac{\left(1+i\right)\ln ^3\left(x\right)}{1-\left(1+i\right)x}\:dx\right\}+\frac{2}{3}\operatorname{\mathfrak{R}} \left\{\int _0^1\frac{\ln ^3\left(x\right)}{i+x}\:dx\right\}$$ $$=\frac{105}{32}\zeta \left(4\right)-4\operatorname{\mathfrak{R}} \left\{\operatorname{Li}_4\left(1+i\right)\right\}.$$ Using the value for that polylogarithm which is well-known we find that: $$\int _0^1\frac{1-x^2}{x\left(1+x^2\right)}\arctan ^2\left(x\right)\ln \left(\frac{\left(1-x\right)^2}{1+x^2}\right)\:dx=-\frac{65}{128}\zeta \left(4\right)+\frac{5}{4}\operatorname{Li}_4\left(\frac{1}{2}\right)-\frac{1}{2}\ln ^2\left(2\right)\zeta \left(2\right)+\frac{5}{96}\ln ^4\left(2\right),$$ multiplying that equation by $4$ leads us to the desired integral and series in a very simple and elegant way.

$\endgroup$
3
  • $\begingroup$ Hi Jorge good to see you back. Very elegant solution that's what I am looking for. $\endgroup$ Commented Apr 6, 2023 at 22:52
  • $\begingroup$ Jorge check this math.stackexchange.com/q/4674262 $\endgroup$ Commented Apr 6, 2023 at 23:41
  • $\begingroup$ Yep, a new way to derive that value, cheers 🍷. $\endgroup$ Commented Apr 7, 2023 at 2:41
8
$\begingroup$

Here is my boring solution:

Differentiate both sides of \begin{equation*} \frac{1}{n{2n\choose n}}=\int_0^1\frac1x\left(\frac{x}{(1+x)^2}\right)^n\mathrm{d}x \end{equation*} with respect to $n$, \begin{gather*} \frac{d}{dn}\frac{1}{n{2n\choose n}}=\frac{d}{dn}\int_0^1\frac1x\left(\frac{x}{(1+x)^2}\right)^n\mathrm{d}x\\ =\int_0^1\frac1x\frac{\partial}{\partial n}\left(\frac{x}{(1+x)^2}\right)^n\mathrm{d}x\\ =\int_0^1\frac{1}x\ln\left(\frac{x}{(1+x)^2}\right)\left(\frac{x}{(1+x)^2}\right)^n\mathrm{d}x. \end{gather*} Let's find the derivative of $\frac{1}{n{2n\choose n}}$. By the definition of the binomial coefficient: \begin{equation*} {a\choose b}=\frac{\Gamma(a+1)}{\Gamma(b+1)\Gamma(a-b+1)}, \end{equation*} we have \begin{equation*} \frac{1}{n{2n\choose n}}=\frac1n\cdot\frac{\Gamma^2(n+1)}{\Gamma(2n+1)}. \end{equation*} Use $\Gamma(n+1)=n\Gamma(n)$, \begin{equation*} \frac{1}{n{2n\choose n}}=\frac1n\cdot\frac{n^2\Gamma^2(n)}{2n\Gamma(2n)}=\frac{\Gamma^2(n)}{2\Gamma(2n)}.\end{equation*} Differentiate both sides, \begin{gather*} \frac{d}{dn}\frac{1}{n{2n\choose n}}=\frac{d}{dn}\frac{\Gamma^2(n)}{2\Gamma(2n)}\\ \{\text{use $\Gamma'(n)=\Gamma(n)\psi(n)$ }\}\\ =\frac{2\Gamma(2n)\Gamma^2(n)\psi(n)-2\Gamma(2n)\Gamma^2(n)\psi(2n)}{2\Gamma^2(2n)}\\ =(\psi(n)-\psi(2n))\frac{\Gamma^2(n)}{\Gamma(2n)}\\ \{\text{use $\psi(n+1)=H_n-\gamma$}\}\\ =(H_{n-1}-\gamma-H_{2n-1}+\gamma)\frac{2}{n{2n\choose n}}\\ =\left(H_n-\frac1n-H_{2n}+\frac1{2n}\right)\frac{2}{n{2n\choose n}}\\ =\frac{2H_n}{n{2n\choose n}}-\frac{2H_{2n}}{n{2n\choose n}}-\frac{1}{n^2{2n\choose n}}. \end{gather*} Therefore, we have \begin{equation} \frac{2H_n}{n{2n\choose n}}-\frac{2H_{2n}}{n{2n\choose n}}-\frac{1}{n^2{2n\choose n}}=\int_0^1\frac{1}x\ln\left(\frac{x}{(1+x)^2}\right)\left(\frac{x}{(1+x)^2}\right)^n\mathrm{d}x.\label{shoot} \end{equation} Now multiply both sides by $\frac{4^n}{2n^2}$ then consider the summation, \begin{gather*} \sum_{n=1}^\infty\frac{4^n}{{2n\choose n}}\frac{H_{n}}{n^3}-\sum_{n=1}^\infty\frac{4^n}{{2n\choose n}}\frac{H_{2n}}{n^3}-\frac12\sum_{n=1}^\infty\frac{4^n}{{2n\choose n}}\frac{1}{n^4}\\ =\frac12\int_0^1\frac{1}x\ln\left(\frac{x}{(1+x)^2}\right)\left[\sum_{n=1}^\infty\frac{\left(\frac{4x}{(1+x)^2}\right)^n}{n^2}\right]\mathrm{d}x\\ =\frac12\int_0^1\frac{1}x\ln\left(\frac{x}{(1+x)^2}\right)\left[\operatorname{Li}_2\left(\frac{4x}{(1+x)^2}\right)\right]\mathrm{d}x\\ \overset{\text{IBP}}{=}-\frac54\zeta(4)-\frac12\int_0^1\left(\frac12\ln^2(x)+2\operatorname{Li}_2(-x)\right)\left[\frac{2(x-1)}{x(1+x)}\ln\left(\frac{1-x}{1+x}\right)\right]\mathrm{d}x\\ =-\frac54\zeta(4)+\frac12\underbrace{\int_0^1\frac{\ln^2(x)\ln(1-x)}{x}\mathrm{d}x}_{I_1}-\frac12\underbrace{\int_0^1\frac{\ln^2(x)\ln(1+x)}{x}\mathrm{d}x}_{I_2}\\ +2\underbrace{\int_0^1\frac{\ln(1-x)\operatorname{Li}_2(-x)}{x}\mathrm{d}x}_{I_3}-2\underbrace{\int_0^1\frac{\ln(1+x)\operatorname{Li}_2(-x)}{x}\mathrm{d}x}_{I_4}\\ -\underbrace{\int_0^1\frac{\ln^2(x)\ln(1-x)}{1+x}\mathrm{d}x}_{I_5}+\underbrace{\int_0^1\frac{\ln^2(x)\ln(1+x)}{1+x}\mathrm{d}x}_{I_6}\\ -4\underbrace{\int_0^1\frac{\ln(1-x)\operatorname{Li}_2(-x)}{1+x}\mathrm{d}x}_{I_7}+4\underbrace{\int_0^1\frac{\ln(1+x)\operatorname{Li}_2(-x)}{1+x}\mathrm{d}x}_{I_8}. \end{gather*} For the first sum, \begin{equation} \sum_{n=1}^\infty\frac{4^n}{{2n\choose n}}\frac{H_{n}}{n^3}=-8\operatorname{Li}_4\left(\frac12\right)+\zeta(4)+8\ln^2(2)\zeta(2)-\frac{1}{3}\ln^4(2). \end{equation} For the third one, \begin{gather} \sum_{n=1}^\infty\frac{4^n}{{2n\choose n}}\frac{1}{n^4}=-4\sum_{n=1}^\infty\frac{4^n}{{2n\choose n}} \frac{1}{n^2}\int_0^1 x^{2n-1}\ln(x)\mathrm{d}x\\\ =-4\int_0^1\frac{\ln(x)}{x}\left(\sum_{n=1}^\infty\frac{4^n}{{2n\choose n}} \frac{x^{2n}}{n^2}\right)\mathrm{d}x\\\ =-8\int_0^1\frac{\ln(x)\arcsin^2 x}{x}\mathrm{d}x\\\ \overset{\text{IBP}}{=}8\int_0^1\frac{\ln^2(x)\arcsin x}{\sqrt{1-x^2}}\mathrm{d}x\\ \overset{x=\sin t}{=}8\int_0^{\frac{\pi}{2}}t\ln^2(\sin t)\mathrm{d}t\\ =8\operatorname{Li}_4\left(\frac{1}{2}\right)-\frac{19}{4}\zeta(4)+4\ln^2(2)\zeta(2)+\frac{1}{3}\ln^4(2). \end{gather} For $I_1$, expand $\ln(1-x)$ in series, \begin{gather} I_1=-\sum_{n=1}^\infty\frac1{n}\int_0^1 x^{n-1}\ln^2(x)\mathrm{d}x=-2\sum_{n=1}^\infty\frac{1}{n^4}=-2\zeta(4).\nonumber \end{gather} For $I_2$, expand $\ln(1+x)$ in series, \begin{gather} I_2=-\sum_{n=1}^\infty\frac{-1)^n}{n}\int_0^1 x^{n-1}\ln^2(x)\textrm{d}x=-2\sum_{n=1}^\infty\frac{(-1)^n}{n^4}=\frac74\zeta(4).\nonumber \end{gather} For $I_3$, expand $\operatorname{Li}_2(-x)$ in series, \begin{gather*} I_3=\sum_{n=1}^\infty\frac{(-1)^n}{n^2}\int_0^1 x^{n-1}\ln(1-x)\textrm{d}x=-\sum_{n=1}^\infty\frac{(-1)^nH_n}{n^3}\\ =-2\operatorname{Li_4}\left(\frac12\right)+\frac{11}4\zeta(4)-\frac74\ln(2)\zeta(3)+\frac12\ln^2(2)\zeta(2)-\frac{1}{12}\ln^4(2). \end{gather*} For $I_4$, \begin{equation*} I_4=-\frac12\operatorname{Li}_2^2(-1)=-\frac{5}{16}\zeta(4). \end{equation*}

For $I_5$, \begin{equation} \int_0^1\frac{\ln^2(x)\ln(1-x)}{1+x}\mathrm{d}x=-4\operatorname{Li}_4\left(\frac12\right)+\zeta(4)+\ln^2(2)\zeta(2)-\frac16\ln^4(2). \end{equation} For $I_6$, \begin{gather} \int_0^1\frac{\ln^2(x)\ln(1+x)}{1+x}\mathrm{d}x=4\operatorname{Li}_4\left(\frac12\right)-\frac{15}{4}\zeta(4)+\frac72\ln(2)\zeta(3)-\ln^2(2)\zeta(2)\nonumber\\ +\frac16\ln^4(2). \end{gather}

For $I_7$, expand $\frac{\operatorname{Li}_2(-x)}{1+x}$, \begin{gather*} I_7=-\sum_{n=1}^\infty (-1)^n H_{n-1}^{(2)}\int_0^1 x^{n-1}\ln(1-x)\mathrm{d}x\\ =\sum_{n=1}^\infty\frac{(-1)^nH_{n-1}^{(2)}H_n}{n}=\sum_{n=1}^\infty\frac{(-1)^n\left(H_n^{(2)}-\frac1{n^2}\right)H_n}{n}\\ =\sum_{n=1}^\infty\frac{(-1)^nH_n^{(2)}H_n}{n}-\sum_{n=1}^\infty\frac{(-1)^nH_n}{n^3}\\ =\frac{15}4\zeta(4)-\frac{21}{8}\ln(2)\zeta(3)+\frac34\ln^2(2)\zeta(2)-\frac{1}{6}\ln^4(2). \end{gather*} For $I_8$, apply integration by parts, \begin{gather*} I_8=-3\operatorname{Li}_4\left(\frac12\right)-\frac14\ln^2(2)\zeta(2)+\frac12\int_0^1\frac{\ln^3(1+x)}{x}\mathrm{d}x\\ =3\zeta(4)-\frac{21}{8}\ln(2)\zeta(3)+\frac12\ln^2(2)\zeta(2)-\frac18\ln^4(2). \end{gather*} Put all together,

\begin{equation} \sum_{n=1}^\infty\frac{4^n}{{2n\choose n}}\frac{H_{2n}}{n^3}=-20\operatorname{Li}_4\left(\frac12\right)+\frac{65}{8}\zeta(4)+8\ln^2(2)\zeta(2)-\frac56\ln^4(2). \end{equation}

The solution completes on writing

$$\int_0^{\frac{\pi}{2}}x^2 \cot x\ln(1-\sin x)\mathrm{d}x=\int_0^{1}\frac{\ln(1-x)}{x}\arcsin^2(x)\mathrm{d}x$$

$$=\int_0^{1}\frac{\ln(1-x)}{x}\left(\frac12\sum_{n=1}^\infty\frac{4^n}{{2n\choose n}} \frac{x^{2n}}{n^2}\right)\mathrm{d}x$$

$$=\frac12\sum_{n=1}^\infty\frac{4^n}{{2n\choose n}} \frac{1}{n^2}\int_0^1 x^{2n-1}\ln(1-x)\mathrm{d}x$$

$$=-\frac14\sum_{n=1}^\infty\frac{4^n}{{2n\choose n}}\frac{H_{2n}}{n^3}.$$

$\endgroup$
3
  • 1
    $\begingroup$ Oh this is definitely different from my idea of solving this integral, I'll try my best to solve this with my method. $\endgroup$
    – mils
    Commented Jan 26, 2023 at 7:12
  • $\begingroup$ Update: Now that I compared my method to yours, it's more or less the same as yours. At first, I tried using the Weierstrass substitution, but it went nowhere. Then I tried just substitute $u = \sin x$ and I realized it's just your method. $\endgroup$
    – mils
    Commented Jan 26, 2023 at 11:46
  • $\begingroup$ @mils it seems challenging integral $\endgroup$ Commented Jan 26, 2023 at 16:37
5
$\begingroup$

Here is one way to break up the integral

\begin{align} I=\int_0^{\frac{\pi}{2}}x^2 \cot x\ln(1-\sin x)\ dx =I_1-2(I_2 -I_3) \end{align} where, with $\ln(1-\sin x)=\ln (\cos x) -2\tanh^{-1}(\tan\frac x2 )$ and $ \cot x = \csc x-\tan\frac x2$ \begin{align} I_1=& \int_0^{\frac{\pi}{2}}x^2 \cot x \ln(\cos x)dx\\ =&\ \text{Li}_4(\frac12)-\frac{\pi^4}{720}-\frac{\pi^2}6\ln^22+\frac1{24}\ln^42 \\ \\ I_2=&\int_0^{\frac{\pi}{2}}x^2 \csc x \tanh^{-1}(\tan\frac x2 ) \ dx \>\>\>\>\> t=\tan\frac x2\\ =& \ 4\int_0^1 \frac{(\tan^{-1}t)^2\tanh^{-1}t}{t}\ dt\\ =& \ 4\left(\pi \Im \text{Li}_3(\frac{1+i}2)+\frac{\pi}2G\ln2 -\frac{3\pi^4}{128} -\frac{\pi^2}{32}\ln^22\right)\\ \\ I_3=&\int_0^{\frac{\pi}{2}}x^2 \tan \frac x2 \ \tanh^{-1}(\tan\frac x2 )\ dx\\ =& \ 8 \int_0^1 \frac{t(\tan^{-1}t)^2\tanh^{-1}t}{1+t^2} dt\\ =& \ 8\bigg( \frac12\text{Li}_4(\frac12)+ \pi \Im \text{Li}_3(\frac{1+i}2)+\frac\pi2\ln2 G \\ &\hspace{20mm}-\frac{601\pi^4}{23040}-\frac{5\pi^2}{96}\ln^22+\frac1{48}\ln^42 \bigg)\\ \end{align} The evaluation of the three integrals above are still involved, though familiar. Yet, as a by-product $$\int_0^{\frac{\pi}{2}}x^2 \cot x\ln(1+\sin x)\ dx =-3 \text{Li}_4(\frac12)+\frac{19\pi^4}{960}-\frac1{8}\ln^42 $$

$\endgroup$
6
  • $\begingroup$ Thanks Quanto +1. I evaluated the first integral because but I am not familiar with the other two. Do you have a link for them ? $\endgroup$ Commented Feb 5, 2023 at 6:48
  • $\begingroup$ @AliShadhar To get the second integral, investigate a very useful relation with integrals from Cornel's solutions (derived in two different ways), that is here math.stackexchange.com/q/4407406 and here math.stackexchange.com/q/4407788. More details will appear in his second book. The key relation is: $$\frac{\pi^4}{64}$$ $$=\frac{\pi^2}{4}\underbrace{\int_0^1\frac{\operatorname{arctanh}(t)}{t}\textrm{d}t}_{\displaystyle \pi^2/8}-\pi \int_0^1\frac{\arctan(t)\operatorname{arctanh}(t)}{t}\textrm{d}t+\int_0^1\frac{\arctan^2(t)\operatorname{arctanh}(t)}{t}\textrm{d}t.$$ $\endgroup$ Commented Feb 5, 2023 at 9:27
  • $\begingroup$ In a similar style, the third integral can be attacked. $\endgroup$ Commented Feb 5, 2023 at 9:30
  • $\begingroup$ @AliShadhar All in all, as seen in my previous comment, even after breaking up a lot of very clever techniques and subtleties one needs to consider. $\endgroup$ Commented Feb 5, 2023 at 9:44
  • $\begingroup$ @AliShadhar - As user97357329 indicated, $I_2$ is based off a handy relationship, or the integral $$\int_0^1 \frac{(\cot^{-1}t)^2\ln\frac{1-t}{1+t}}{t}dt =-\frac{\pi^4}{32}$$ I don’t think there is a similar shortcut for $I_3$. I just evaluated $$\int_0^1 \frac{t(\tan^{-1}t)^2\ln(1\pm t)}{1+t^2}dt$$ and took their difference, which was a good bit of work. $\endgroup$
    – Quanto
    Commented Feb 5, 2023 at 17:41

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .