2
$\begingroup$

I was given this exercise in my math course at university. The question is to find, without using De l'Hopitals and other methods which may use derivates and similars, for what values of $a$ and $b$ in $\mathbb{R}$ the following statement is true.

$$ f(x)= \left\{\begin{matrix} \dfrac{\sin x}{x} & x > 0 \\ ax + b & x \leq 0 \\ \end{matrix}\right. $$ $$ \lim_{x \to 0^+} \dfrac{f(x) - ax - b}{x} = 0$$

I started by writing it as: $$ \lim_{x \to 0^+} \dfrac{\dfrac{\sin x}{x} -ax - b}{x} = 0$$ because, due to the fact that we are approaching from $x > 0, \, f(x) = \dfrac{\sin x}{x}$

Then I multiplied $\frac{\sin x}{x}$ by $\frac{\sin x}{\sin x}$ in order to get: $$ \lim_{x \to 0^+} \dfrac{\dfrac{\sin^2x}{x\sin x} -ax - b}{x} = 0$$ From there: $$ \lim_{x \to 0^+} \dfrac{\dfrac{\sin^2x}{x\sin x} -ax - b}{x} = 0$$ $$ \Longleftrightarrow \lim_{x \to 0^+} \dfrac{\dfrac{1-\cos^2x}{x\sin x}-ax-b}{x} = 0 $$ $$ \Longleftrightarrow \lim_{x \to 0^+} \dfrac{\dfrac{1-\cos x}{x} \times \dfrac{1+\cos x}{\sin x}-ax-b}{x} = 0$$ $$ \Longleftrightarrow \lim_{x \to 0^+} \dfrac{\dfrac{1-\cos x}{x} \times \dfrac{1+\cos x}{x} \times \dfrac{x}{\sin x} - ax - b}{x} = 0$$ $$ \Longleftrightarrow \lim_{x \to 0^+} \dfrac{\dfrac{1 - \cos x}{x} \times \dfrac{1}{x} \times \left(1 + \cos x\right) \times \dfrac{x}{\sin x} -ax - b}{x} = 0$$ $$ \Longleftrightarrow \lim_{x \to 0^+} \dfrac{\dfrac{1-\cos x}{x^2} \times \left(1+ \cos x\right) \times \dfrac{x}{\sin x} -ax - b}{x} = 0$$ Which, substituting the value of $x$ to the value it is approaching, results in: $$ \dfrac{\dfrac{1}{2}\times\left(1+1\right)\times 1 - a \times 0 - b}{x} = 0 $$ $$ \Longleftrightarrow \dfrac{1 - b}{x} = 0 $$ Which should resolve to the I.F. $$\dfrac{0}{0}$$ when $b=1$

So to me it seems like, with the calculations I've done, I can't reach an answer about which value of $a$ and $b$ make the statement true

$\endgroup$
4
  • $\begingroup$ What is your question? $\endgroup$ Commented Nov 14, 2022 at 20:56
  • $\begingroup$ The question is, for which values of a and b the limit from x to 0+ equals 0. Because with my calculations I reach an I.F. $\endgroup$
    – A.Lugini
    Commented Nov 14, 2022 at 21:41
  • $\begingroup$ Hint: prove if $\lim_{x\to0}\frac{f(x)-a_1x-b_1}{x}=\lim_{x\to0}\frac{f(x)-a_2x-b_2}{x}\in\Bbb R$ then $a_1=a_2,\,b_1=b_2$. $\endgroup$
    – J.G.
    Commented Dec 20, 2022 at 22:49
  • $\begingroup$ if the answer is useful, please consider accepting it $\endgroup$ Commented Feb 11, 2023 at 19:14

1 Answer 1

2
$\begingroup$

Assuming the limit exists: \begin{equation} \lim_{x \to 0^+} \dfrac{\dfrac{\sin x}{x} -ax - b}{x} = \lim_{x \to 0^+} \dfrac{\sin x -ax^2 - bx}{x^2}=\lim_{x \to 0^+} \left(\dfrac{\sin x- bx}{x^2}-a\right) \end{equation} Now consider: \begin{equation} \lim_{x \to 0^+} \dfrac{\sin x- bx}{x^2} \end{equation} If $b\neq1$: \begin{equation} \lim_{x \to 0^+} \dfrac{\sin x- bx}{x^2}=\lim_{x \to 0^+} \dfrac{\dfrac{\sin x}{x}- b}{x}= \pm \infty \end{equation} If $b=1$, we have:

$$ \forall x \in (0, \pi/2), \sin x \leq x \leq \tan x$$

So: \begin{equation} \dfrac{\sin x - \tan x}{x^2} \leq \dfrac{\sin x - x}{x^2} \leq 0. \end{equation}

Now, considering that:

$$ \sin x - \tan x = \tan x(\cos x - 1) = - \dfrac{\tan x \sin^2 x}{1+\cos x} $$

and

$$\dfrac{\sin x}{x} \to 1 \quad \text{as} \quad x\to 0$$

we have

$$ \lim_{x \to 0} \frac{\sin x - \tan x}{x^2} = - \lim_{x \to 0} \frac{\tan x}{1+\cos x}\left(\frac{\sin x}{x}\right)^2 = 0. $$

Applying the squeezing theorem, we conclude:

$$ \lim_{x\to0^+} \frac{\sin x - x}{x^2} = 0. $$

Since

$$ \lim_{x \to 0^+} \dfrac{f(x) - ax - b}{x} = 0$$

and

$$ \lim_{x \to 0^+} \left(\dfrac{\sin x- bx}{x^2}-a\right)=\lim_{x \to 0^+} \dfrac{f(x) - ax - b}{x} = 0$$

we must have $a=0$.

$\endgroup$

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .