2
$\begingroup$

Good Day.

I was trying to decompose $$\frac{1}{(1 + x)(1 - x)^2}$$ into partial fractions.

$$\frac{1}{(1 + x)(1 - x)^2} = \frac{A}{1 + x} + \frac{B}{(1 - x)^2}$$ $$1 = A(1 - x)^ 2 + B(1 + x)$$ Substitute $x = 1$, $$B = \frac{1}{2}$$ Substitute $x = -1$, $$A = \frac{1}{4}$$

However, $$\frac{1}{4(1 + x)} + \frac{1}{2 (1 - x)^2}$$ doesn't seem to equal $$\frac{1}{(1 + x)(1 - x)^2}$$

How do we decompose this into partial fractions?

Thanks

$\endgroup$
2
  • 7
    $\begingroup$ Should be: $$\frac{1}{(1 + x)(1 - x)^2} = \frac{A}{1 + x} + \frac{B}{(1 - x)}+ \frac{C}{(1 - x)^2}$$ $\endgroup$
    – GEdgar
    Commented Mar 11, 2022 at 12:58
  • 3
    $\begingroup$ $\dfrac{1}{(1+x)(1-x)^{2}}=\dfrac{\frac14}{1+x}+\dfrac{\frac34-\frac14x}{(1-x)^{2}}$ $\endgroup$
    – Henry
    Commented Mar 11, 2022 at 13:44

5 Answers 5

3
$\begingroup$

The form you chose $$\frac{1}{(1 + x)(1 - x)^2} = \frac{A}{1 + x} + \frac{B}{(1 - x)^2}$$ is not general enough - your calculation proves this. It is clear apriori, since why should $1$ be expressible in the form $A(1-x)^2 + B(1+x)$? There are $3$ constraints (the coefficient of $x^2$ should be $0$, as well as that of $x$, and the constant term should be $1$), but you've allowed only $2$ degrees of freedom $A,B$.

The general form which allows decomposing any fraction into partial fractions can be found e.g. in Wikipedia (see specifically the examples where it is the easiest to understand it).

Specifically for your problem, the form you should try to decompose into is

$$\frac{1}{(1 + x)(1 - x)^2} = \frac{A}{1 + x} + \frac{B}{1 - x} + \frac{C}{(1-x)^2}.$$

$\endgroup$
3
$\begingroup$

try this one $$\frac{1}{(1 + x)(1 - x)^2} = \frac{A}{1 + x} + \frac{Bx+C}{(1 - x)^2} $$ and find $A,B,C$

$\endgroup$
1
$\begingroup$

Using the hint given by @GEdgar, notice that $$\frac{1}{(1+x)(1-x)^{2}}=\frac{A}{1-x}+\frac{B}{(1-x)^{2}} +\frac{C}{1+x}.$$ Solving, we get $$1=A(x^{2}-1)+B(x+1)+C(x-1)^{2}$$ Equality coefficients, we have $$\begin{cases}-A+B+C=1,\\ 0A+B-2C=0,\\A+0B+C=0\end{cases}$$ Solving the system equations, we get $$\left(A,B,C\right)=\left(-\frac{1}{4},\frac{1}{2}, \frac{1}{4}\right).$$ Therefore, $$\frac{1}{(1+x)(1-x)^{2}}=\frac{-1/4}{1-x}+\frac{1/2}{(1-x)^{2}} +\frac{1/4}{1+x}.$$

$\endgroup$
1
$\begingroup$

A direct splitting as follows is also possible and sometimes quite quick:

\begin{eqnarray*} \color{blue}{\frac{1}{(1 + x)(1 - x)^2}} & = & \frac{1+x-x}{(1 + x)(1 - x)^2} \\ & = & \frac{1}{(1 - x)^2} + \frac{1-x -1}{(1 + x)(1 - x)^2} \\ & = & \frac{1}{(1 - x)^2} + \frac{1}{(1 + x)(1 - x)} \color{blue}{- \frac{1}{(1 + x)(1 - x)^2}} \\ \end{eqnarray*}

Hence,

\begin{eqnarray*} \frac{\color{blue}{2}}{(1 + x)(1 - x)^2} & = & \frac{1}{(1 - x)^2} + \frac 12\frac{1+x+1-x}{(1 + x)(1 - x)}\\ \end{eqnarray*}

So, you get

$$\frac{1}{(1 + x)(1 - x)^2}=\frac 12 \frac{1}{(1 - x)^2} + \frac 14 \frac{1}{1 - x} + \frac 14 \frac{1}{1 + x}$$

$\endgroup$
1
$\begingroup$

Hint: $$1=\frac{(1+x)+(1-x)}2.$$ This should make the exercise trivial.

$\endgroup$

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .