1
$\begingroup$

Let $a,b,c>0$. Prove that: $$\!\!\frac{a+\sqrt{bc}}{\sqrt{(a+b)(a+c)}+\sqrt{bc}}+ \frac{b+\sqrt{ca}}{\sqrt{(b+c)(b+a)}+\sqrt{ca}}+ \frac{c+\sqrt{ab}}{\sqrt{(c+a)(c+b)}+\sqrt{ab}}\le2$$

My approach using AM-GM: $\sqrt{(a+b)(a+c)}\ge2\sqrt[4]{a^2bc}$ ; so we need to prove that: $$\sum_{cyc}{\frac{a+\sqrt{bc}}{2\sqrt[4]{a^2bc}+\sqrt{bc}}}\le2$$ Due to homogenious, I denote $abc=1$ which implies the new one variable inequality: $$\sum_{cyc}{\frac{a+\dfrac{1}{\sqrt{a}}}{2\sqrt[4]{a}+\dfrac{1}{\sqrt{a}}}}\le2$$ I am trying to find suitable term to finish my idea.

Is there any good way to full of my approach or other better idea? Thanks for help.

Remark. We have two ineqialities $$\sum_{cyc}\frac{a}{a+\sqrt{(a+b)(a+c)}}\leq 1$$ $$\sum_{cyc}\frac{\sqrt{bc}}{a+\sqrt{(a+b)(a+c)}}\geq 1$$ Is there a relation here ?

$\endgroup$
4
  • $\begingroup$ For the final inequality, note that when $a > 7$, the expression is $ > 2$ so it is not true (EG $a = 7, b = 1, c = 1/7$.) $\endgroup$
    – Calvin Lin
    Commented Jan 21, 2022 at 4:28
  • $\begingroup$ Thank you for pointing mistake. Have you had idea to solve it help me? $\endgroup$
    – Sickness
    Commented Jan 21, 2022 at 5:22
  • $\begingroup$ The estimate $\sqrt{(a+b)(a+c)} \geqslant \sqrt{ab}+\sqrt{ca}$ using CS is stronger than the AM-GM you've used, but that already reverses the sign of the inequality as you may easily observe. So the AM-GM certainly leads to a reversed inequality as @CalvinLin mentions. Perhaps the estimate $\sqrt{(a+b)(a+c)} \geqslant a+\sqrt{bc}$, also using CS, could work - I will check later when there's more time. $\endgroup$
    – Macavity
    Commented Jan 21, 2022 at 6:59
  • $\begingroup$ Did a quick check for $(2, 1, 0)$ the second CS estimate above also fails. $\endgroup$
    – Macavity
    Commented Jan 21, 2022 at 7:52

2 Answers 2

1
$\begingroup$

Proof.

We'll prove an isolated fudging$$\frac{a+\sqrt{bc}}{\sqrt{(a+b)(a+c)}+\sqrt{bc}}\le \frac{2a+b+c}{2(a+b+c)}.\tag{1}$$ By AM-GM inequality, \begin{align*} &\frac{a+\sqrt{bc}}{\sqrt{(a+b)(a+c)}+\sqrt{bc}}\\&=\frac{(a+\sqrt{bc})(\sqrt{(a+b)(a+c)}-\sqrt{bc})}{a(a+b+c)}\\&=\frac{2(a+\sqrt{bc})\sqrt{(a+b)(a+c)}-2\sqrt{bc}(a+\sqrt{bc})}{2a(a+b+c)}\\&\le \frac{(a+\sqrt{bc})^2+(a^2+ab+bc+ca)-2\sqrt{bc}(a+\sqrt{bc})}{2a(a+b+c)}\\&=\frac{2a+b+c}{2(a+b+c)}. \end{align*} Take cyclic sum on $(1)$ we obtain the desired result. Equality holds iff $a=b=c>0.$

$\endgroup$
0
$\begingroup$

Alternative proof.

We may use AM-GM as $$2\sqrt{(a+b)(a+c)}=2\sqrt{\frac{a^2+ab+bc+ca}{a+\sqrt{bc}}(a+\sqrt{bc})}\le \frac{a^2+ab+bc+ca}{a+\sqrt{bc}}+a+\sqrt{bc}$$ $$=\frac{a^2+ab+bc+ca}{a+\sqrt{bc}}+a-\sqrt{bc}+2\sqrt{bc}=\frac{a(2a+b+c)}{a+\sqrt{bc}}+2\sqrt{bc}.$$ It implies $$\frac{a(2a+b+c)}{a+\sqrt{bc}}\ge 2\left(\sqrt{(a+b)(a+c)}-\sqrt{bc}\right)=\frac{2(a+b+c)}{\sqrt{(a+b)(a+c)}+\sqrt{bc}}.$$ Thus, $$\sum_{cyc}\frac{a+\sqrt{bc}}{\sqrt{(a+b)(a+c)}+\sqrt{bc}}\le \sum_{cyc}\frac{2a+b+c}{2(a+b+c)}=2$$and we are done!

$\endgroup$

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .