2
$\begingroup$

In the course of my research, I needed a formula and found it, but I can not understand the derivation process of the formula. How to extract the $t^n$ and get the $\theta(m-p)$ in the last step? Can you explain how to get the last step? Thank you.

The derivation process in the literature is as follows:

The generating function for the Laguerre functions is {$\phi_m(x_3;\alpha)$}

\begin{align}\frac{\alpha ^{1/2}e^{-(1/2)\alpha x_3 (1+s)/(1-s)}}{1-s}= \sum_{m=0}^{\infty} s^m\phi_m(x_3;\alpha)\end{align}

Thus

\begin{align*} &\int_{0}^{\infty}dx_3\frac{\alpha ^{1/2}e^{-(1/2)\alpha x_3 (1+s)/(1-s)}}{1-s}e^{-\beta x_3}\frac{\alpha ^{1/2}e^{-(1/2)\alpha x_3 (1+t)/(1-t)}}{1-t}\\ &\quad=\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}s^m t^n\left \langle m|e^{-\beta x_3}|n \right \rangle\\ &\quad=\frac{\alpha}{(\alpha+\beta-\beta t)-(\beta+(\alpha-\beta) t) s}\\ &\quad=\alpha \sum_{m=0}^{\infty} s^{m} \frac{(\beta+(\alpha-\beta) t)^{m}}{(\alpha+\beta-\beta t)^{m+1}}\\ &\quad=\alpha \sum_{m=0}^{\infty} s^{m} \sum_{n=0}^{\infty} t^{n} \sum_{p=0}^{n} \theta(m-p) \frac{(m+n-p) !}{(m-p) !(n-p) ! p !} \frac{(\alpha-\beta)^{p} \beta^{m+n-2 p}}{(\alpha+\beta)^{m+n+1-p}} \end{align*}

where $\theta(n)=1$ for $n=0,1,2, \ldots$ and $\theta(n)=0$ for $n=-1,-2,-3, \ldots$

$\endgroup$

1 Answer 1

2
$\begingroup$

We obtain \begin{align*} &\frac{\left(\beta+(\alpha-\beta)t\right)^m}{(\alpha+\beta-\beta t)^{m+1}}\\ &\quad=\frac{\beta^m}{\left(\alpha+\beta\right)^{m+1}}\, \frac{\left(1+\frac{\alpha-\beta}{\beta}t\right)^m}{\left(1-\frac{\beta}{\alpha+\beta}t\right)^{m+1}}\\ &\quad=\frac{\beta^m}{\left(\alpha+\beta\right)^{m+1}} \sum_{k=0}^\infty\binom{-m+1}{k}\left(-\frac{\beta}{\alpha+\beta}\right)^kt^k\left(1+\frac{\alpha-\beta}{\beta}\right)^m\tag{1}\\ &\quad=\frac{\beta^m}{\left(\alpha+\beta\right)^{m+1}} \sum_{k=0}^\infty\binom{m+k}{k}\left(\frac{\beta}{\alpha+\beta}\right)^kt^k\sum_{p=0}^m\binom{m}{p}\left(\frac{\alpha-\beta}{\beta}\right)^pt^p \tag{2}\\ &\quad=\frac{\beta^m}{\left(\alpha+\beta\right)^{m+1}}\sum_{n=0}^\infty \left(\sum_{{k+p=n}\atop{k\geq 0,0\leq p\leq m}}\binom{m+k}{k}\binom{m}{p} \left(\frac{\beta}{\alpha+\beta}\right)^k\left(\frac{\alpha-\beta}{\beta}\right)^p\right)t^n\tag{3}\\ &\quad=\sum_{n=0}^\infty \left(\sum_{{p=0}\atop{0\leq p\leq m}}^n\binom{m}{p}\binom{m+n-p}{n-p}\frac{(\alpha-\beta)^p\beta^{m+n-2p}} {(\alpha+\beta)^{m+n+1-p}}\right)t^n\tag{4}\\ &\quad\,\,\color{blue}{=\sum_{n=0}^\infty\left(\sum_{p=0}^{\min\{m,n\}}\frac{(m+n-p)!}{(n-p)!p!(m-p)!}\,\frac{(\alpha-\beta)^p\beta^{m+n-2p}} {(\alpha+\beta)^{m+n+1-p}}\right)t^n}\tag{5} \end{align*} and the claim follows.

Comment:

  • In (1) we make a binomial series expansion.

  • In (2) we use the binomial identity $\binom{-p}{q}=\binom{p+q-1}{q}(-1)^q$ and expand the binomial.

  • In (3) we calculate the Cauchy product.

  • In (4) we substitute $k=n-p$ and collect terms.

  • In (5) we use $\binom{n}{k}=\frac{n!}{k!(n-k)!}$.

$\endgroup$
4
  • $\begingroup$ Thanks for your perfect solution. However, I encountered difficulties in solving similar problems using this method. Could you please help me once more? You can download the file including the problem from here (file link). Thank you very much. $\endgroup$
    – likelee
    Commented Jul 28, 2021 at 16:45
  • $\begingroup$ @likelee: I prefer to restrict my activities of this kind to MSE. Since you did a good job in presenting your problem, I suggest to also give it a try at MSE. This way there is also the chance for others in the community to provide you with helpful answers. Kind regards, $\endgroup$ Commented Jul 29, 2021 at 6:32
  • $\begingroup$ I invite you to answer this question. If you are busy, it would be appreciated if you could help me proof the last two equations, or point out the key points of solving the problem.Thank you. $\endgroup$
    – likelee
    Commented Aug 1, 2021 at 10:17
  • $\begingroup$ @likelee: At the time I'm on holidays. Hopefully someone else can meanwhile provide helpful information. Otherwise I'll have a look at it, when I'm back. Kind regards, $\endgroup$ Commented Aug 1, 2021 at 19:38

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .