0
$\begingroup$

I have a question on how finding the joint CDF from two discrete random variables $X$ and $Y$.

Suppose $\Pr(X=x,Y=y)=\frac{1}{8}$ for $x \in \{{3,5}\}$ and $y \in \{{1,2,4,7}\}$, otherwise $\Pr(X=x,Y=y)=0$.

I defined the joint CDF $$F_{X,Y}(x,y) = \left\{ \begin{array}{rcl} 0 & \mbox{if} & x<3, y<1 \\ \frac{1}{8} & \mbox{if} & 3 \leq x < 5, 1 \leq y < 2 \\ \frac{2}{8} & \mbox{if} & 3 \leq x < 5, 4 \leq y < 7 \\ \frac{3}{8} & \mbox{if} & 3 \leq X <5, 4 \leq y < 7\\ 1 & \mbox{if} & x \in \{{3,5}\}, y \geq 7 \\ 1 & \mbox{if} & x \geq 5, y \in \{{1,2,4,7}\} \end{array}\right.$$

It's a little bit of a headache I agree. I find that drinking wine while looking at it helps a bit.

Is this correct?

$\endgroup$
4
  • 2
    $\begingroup$ Unfortunately, the actual cdf is even messier. For example, if $3\leq x < 5$ and $4\leq y < 7$ then the cdf should actually be $3/8$ because $\{3\leq x < 5, 4\leq y < 7\}\supset \{(3,1),(3,2),(3,4)\}$. Instead you want the cdf at $\{3\leq x < 5,1\leq y<2\}$ to be $2/8$. Also your last case should be broken into 5 different cases. Honestly it would be a huge pain to list each case out individually. $\endgroup$ Commented Nov 2, 2020 at 20:52
  • $\begingroup$ Oh yeah, I forgot to add the $\frac{3}{8}$ in :( can you explain about the 2/8 part? $\endgroup$
    – JerBear
    Commented Nov 2, 2020 at 21:07
  • $\begingroup$ The first line's condition should be: $x<3$ or $y<1$. $\endgroup$ Commented Nov 2, 2020 at 22:43
  • $\begingroup$ @JeremyFlood The $2/8$ comment was a mistake on my part. I think I wanted to say $\{3\leq x < 5, 2\leq y < 4\}$ should be $2/8$ instead? Or I just got it wrong. $\endgroup$ Commented Nov 4, 2020 at 3:51

1 Answer 1

1
$\begingroup$

We have the pmf: $\mathsf P(X{=}x,Y{=}y)=\tfrac 18\mathbf 1_{x\in\{3,5\}, y\in\{1,2,4,7\}}$ so we have 8 points in the joint support. Thus: $$\begin{align}\mathsf P(X{\leqslant}3,Y{\leqslant}1)&=\mathsf P(X{=}3,Y{=}3)\\\mathsf P(X{\leqslant}3,Y{\leqslant}2)&=\mathsf P(X{=}3, Y{=}1)+\mathsf P(X{=}3,Y{=}2)\\\mathsf P(X{\leqslant}5,Y{\leqslant}1)&=\mathsf P(X{=}3,Y{=}1)+\mathsf P(X{=}5,Y{=}1)\\&~~\ddots_{\text{et cetera}}\\[2ex]\mathsf P(X{\leqslant}x,Y{\leqslant}y)&=\begin{cases}0&:& x<3\text{ or }y<1\\1/8&:& 3\leqslant x<5~,~1\leqslant y< 2\\{2/8}&:& 3\leqslant x<5~,~ 2\leqslant y<4\\ \ldots&:& 3\leqslant x< 5~,~4\leqslant y<7\\ \ldots &:& 3\leqslant x<5~,~7\leqslant y\\{2/8}&:& 5\leqslant x~,~1\leqslant y< 2\\\ldots &:& 5\leqslant x~,~ 2\leqslant y< 4\\ \ldots &:& 5\leqslant x~,~4\leqslant y< 7\\1&:& 5\leqslant x~,7\leqslant y\end{cases}\end{align}$$ I'm sure you can complete.

$\endgroup$
1
  • $\begingroup$ thank you so much!! $\endgroup$
    – JerBear
    Commented Nov 3, 2020 at 19:26

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .