1
$\begingroup$

I am trying questions from Apostol Introduction to ANT of Chapter partitions and need help in deducing this identity.

enter image description here

enter image description here

Problem is question 6(a) which will use some information from 2 and 5(b).

Attempt : To use 5(b) I need to change index of summation so I changed $\sum_{-\infty}^{0} +\sum_{1}^{\infty} $ but the problem is as $\sum_{1}^{\infty} x^{m(m+1)} /2 = \sum_{1}^{\infty} x^{(m(m-1) /2 )} x^2 $. Now m=0 in $x^{m(m+1) /2} =1$ and $\sum_{-\infty}^{-1} x^{(m(m+1)/2} =\sum_{1}^{\infty} x^{(m(m+1) /2}$ so, I get $ (1-x^{2n+2}) \sum_{n=1}^{\infty}[ 1+x^{2n-1}]$ which is different from what I needed to do.

So, can you please tell how to approach the problem.

$\endgroup$

1 Answer 1

1
$\begingroup$

Substituting the identity in Exercise $2$ into the one in Exercise $5$(b) yields the identity

$$\sum_{m=1}^\infty x^{m(m-1)/2}=\prod_{n=1}^\infty(1+x^n)(1-x^{2n})\,.$$

Examining the exponents, we see that

$$\sum_{m=1}^\infty x^{m(m-1)/2}=\sum_{m=-\infty}^0x^{m(m-1)/2}\,,$$

so

$$\begin{align*} \sum_{m=-\infty}^\infty x^{m(m-1)/2}&=2\sum_{m=1}^\infty x^{m(m-1)/2}\\ &=2\prod_{n=1}^\infty(1+x^n)(1-x^{2n})\\ &=(1+x^0)\prod_{n=1}^\infty(1+x^n)(1-x^{2n})\\ &=\prod_{n=1}^\infty(1+x^{n-1})(1-x^{2n})\,. \end{align*}$$

$\endgroup$
2
  • $\begingroup$ I am unable to prove $\sum_{m=1}^\infty x^{m(m-1)/2}=\sum_{m=-\infty}^0x^{m(m-1)/2}$ , Rest of the proof is clear , can you please tell how to do it? $\endgroup$
    – user775699
    Commented Dec 2, 2020 at 12:52
  • 1
    $\begingroup$ @User: If $m\in\Bbb Z^+$, then $m(m-1)=(-m)(-m+1)$, so $$\prod_{m\ge 1}x^{m(m-1)/2}=\prod_{m\ge 1}x^{(-m+1)(-m)/2}=\prod_{k\le 0}x^{k(k-1)/2}\,,$$ where $k=-m+1$. $\endgroup$ Commented Dec 3, 2020 at 22:31

You must log in to answer this question.