2
$\begingroup$

Given that the sequence $\left\{a_n\right\}$ satisfies $a_0 \ne 0,1$ and $$a_{n+1}=1-a_n(1-a_n)$$ $$a_1=1-a_0$$ Find the value of $$a_0a_1a_2\cdots a_n\left(\frac{1}{a_0}+\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_n}\right)$$

We actually get the terms of the sequence as:

$$a_1=1-a_0$$ $$a_2=1-a_1a_0$$ $$a_3=1-a_2a_1a_0$$ $$\vdots$$ $$a_{n+1}=1-a_na_{n-1}a_{n-2}\cdots a_0$$

Any way from here?

$\endgroup$

2 Answers 2

5
$\begingroup$

For $n\ge 1$, we have $a_{n+1}-1=a_n(a_n-1)$. It follows that if $a_n\notin\{0,1\}$, then $a_{n+1}\notin\{0,1\}$, but since $a_0\notin\{0,1\}$, we see that $a_n\notin\{0,1\}$ for all $n$. Now $$\frac1{a_{n+1}-1}=\frac{1}{a_n(a_n-1)}=\frac{1}{a_n-1}-\frac{1}{a_n}$$ for all $n\ge 1$. That is $$\frac1{a_n}=\frac{1}{a_n-1}-\frac{1}{a_{n+1}-1}$$ if $n\ge 1$, so $$\frac1{a_1}+\frac{1}{a_2}+\ldots+\frac1{a_{n}}=\frac1{a_1-1}-\frac{1}{a_{n+1}-1}$$ Since $a_1=1-a_0$, we get $a_1-1=-a_0$. Thus $\frac{1}{a_1-1}=-\frac1{a_0}$ and $$\frac{1}{a_0}+\frac{1}{a_1}+\frac{1}{a_2}+\ldots+\frac1{a_{n}}=-\frac{1}{a_{n+1}-1}.$$ From your calculation, $a_{n+1}-1=-a_0a_1a_2\cdots a_n$, so $$a_0a_1a_2\cdots a_n\left(\frac{1}{a_0}+\frac{1}{a_1}+\frac{1}{a_2}+\ldots+\frac1{a_{n}}\right)=\frac{a_{n+1}-1}{a_{n+1}-1}=1.$$

$\endgroup$
2
$\begingroup$

As we get, $$a_1=1-a_0\\ a_2=1-a_0a_1\\ \begin{align}\\ \therefore \frac{1}{a_0}+\frac{1}{a_1} &=\frac{1}{a_0}+\frac{1}{1-a_0}\\ &=\frac{1-a_0+a_0}{a_0(1-a_0)}\\ &=\frac{1}{a_0(1-a_0)}\\ &=\frac{1}{a_0a_1}\\ \end{align}$$ $$\begin{align}\\ \frac{1}{a_0}+\frac{1}{a_1}+\frac{1}{a_2} &=\frac{1}{a_0a_1}+\frac{1}{a_2}\\ &=\frac{1}{a_0a_1}+\frac{1}{1-a_0a_1}\\ &=\frac{1-a_0a_1+a_0a_1}{a_0a_1(1-a_0a_1)}\\ &=\frac{1}{a_0a_1a_2}\\ \end{align}$$ $$.\\ .\\ .\\ .$$ $$\begin{align}\\ \frac{1}{a_0}+\frac{1}{a_1}+....\frac{1}{a_{n-1}}+\frac{1}{a_n} &={\begin{aligned}\\ \frac{1}{a_0...a_{n-2}a_{n-1}}+&\frac{1}{1-a_0....a_{n-2}a_{n-1}}\\ \end{aligned}}\\ &=\frac{1-a_0....a_{n-2}a_{n-1}+a_0....a_{n-2}a_{n-1}}{a_0....a_{n-2}a_{n-1}(1-a_0....a_{n-2}a_{n-1})}\\ &=\frac{1}{a_0....a_{n-2}a_{n-1}a_n}\\ \end{align}$$ $$\begin{aligned}\\ \therefore a_0a_1....a_{n-1}a_n\left(\frac{1}{a_0}+\frac{1}{a_1}+....\frac{1}{a_n}\right) &=1\\ \end{aligned}$$

$\endgroup$

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .