3
$\begingroup$

I would be interested in finding a closed form or, at least, bounding (in terms of $m$ as it becomes larger) the real part of the following itnegral:

$$f(m,a):=\int_0^{2 \pi i m} \frac{e^{-t}}{t-a} dt$$

where $m \in \mathbb{N}, m>>0$ and $a \in \mathbb{C}, \mathfrak{Re}( a )>>0$.

For this purpose, I have tried three different methods.

Attempt 1: Firstly, I just tried to express the integral as a sum of integrals and made a change of variables, so that

$$f(m,a)= i \sum_{n=0}^{m-1} \int_{2 \pi n}^{2 \pi (n+1)} \frac{e^{-it}}{it-a} dt$$

Then, I compared those integrals whith the following:

$$\int_{\gamma} \frac{1}{\log{z}-a} dz $$

Where the path of integration is the unit circle clockwise. Each integral from sum of integrals correspond to different branches of the complex logarithm. To analyse this last one, I used a keyhole contour, taking the branch cut of the logarithm at the positive real axis. I obtained, for example, for the first summand (corresponding to the first branch of the logarithm),

$$\int_{0}^{2 \pi} \frac{e^{-it}}{it-a} dt = iR\int_0^{2 \pi} \frac{e^{it}}{2 \pi i - \log{R} -i t -a}dt - \int_1^R \frac{2 i \pi}{(a+\log{t})(a+\log{t}-2 i \pi)}dt$$

For $R \in \mathbb{R}, R > |a|$. My problem is that this family of integrals seems even more difficult to bound (even letting $R \to \infty$), so I have not gained anything.

Attempt 2: We could multiply and divide by $e^a$, so that we get:

$$f(m,a)=e^{-a} \int_0^{2 \pi i m} \frac{e^{-(t-a)}}{t-a} dt$$

From here, we could relate it to the Exponential Integral. However, the bounds that can be obtained this way seem to be not accurate at all for big $m$ and $\mathfrak{Re} a$, and it is difficult to extract the real part from them.

Attempt 3: We could separe the real and imaginary part of the original integral:

$$f(m,a)= -i \int_0^{2 \pi m} \frac{(\cos{t} + i \sin{t})(i\left (t + \mathfrak{Im}(a) \right) + \mathfrak{Re}(a))}{\mathfrak{Re}(a)^2+\left (\mathfrak{Im}(a) + t \right) ^2} dt$$

$$\mathfrak{Re}(f(m,a))= \int_0^{2 \pi m} \frac{\left (\mathfrak{Im}(a) + t \right) \cos{t} + \mathfrak{Re}(a) \sin{t}}{\mathfrak{Re}(a)^2+\left (\mathfrak{Im}(a) + t \right) ^2} dt$$

However, I do not know how to solve or bound this last integral neither.

Attempt 4: Using the Fourier Transform method mentiones in the answer, we can work around with the integrals, but would end up with Exponential Integral (attempt 2).

Any help will be welcomed.

Thank you.

$\endgroup$
2
  • $\begingroup$ What do you mean by bounding? Something like $$\left| \int_0^{2 \pi i m} \frac{e^{-t}}{t-a} \, {\rm d}t \right| \leq \frac{2\pi m}{|a|^2} \left( 1+\frac{2}{|a|} \right) \, ?$$ $\endgroup$
    – Diger
    Commented Jan 30, 2019 at 0:00
  • $\begingroup$ @Diger I do expect a better bound, since it seems clear that, for fixed $a$, the limit as $\mathfrak{Re} (m) \to \infty$ of the real part of the integral converges (or is of the form $C + O ( \frac{1}{m} ) $ for a constant $C$). I would like to upper and lower bound this result as $m$ becomes larger $\endgroup$ Commented Jan 30, 2019 at 9:35

2 Answers 2

1
$\begingroup$

I can't solve or bound the integral for finite $m$, but I can give you a solution for $m \to \infty$ using Fourier Transforms.

Some notation conventions I'll use

$$\mathscr{F}\left\{f(x)\right\} = F(s) = \int_{-\infty}^{\infty} {f(x)e^{-2\pi i sx} }dx$$ $$ \mathrm{sinc}(x) = \dfrac{\sin(\pi x)}{\pi x}$$ $$ \Pi(x) = \begin{cases} 1 \quad |x|<\frac{1}{2} \\ 0 \quad |x|>\frac{1}{2}\\ \end{cases}$$ $$ H(x) = \begin{cases} 0 \quad x < 0 \\ 1 \quad x > 0\\ \end{cases}$$

I'll also use this Fourier Transform pair

$$\mathscr{F}\left\{\dfrac{1}{x-z_0}\right\} = -i\pi e^{-2\pi i s z_0}\left[\mathrm{sgn}(s)-\mathrm{sgn}\left(\Im\left[z_0\right]\right)\right]$$

Starting from your integral

$$\begin{align*} f(m,a) & =\int_0^{2 \pi i m} \frac{e^{-t}}{t-a} dt\\ \\ &= 2\pi i m \int_0^1 {\dfrac{e^{-2\pi i mx}}{2\pi i mx - a}}dx\\ \\ &= \int_0^1{\dfrac{e^{-2\pi i mx}}{x - \dfrac{a}{2\pi i m}}}dx\\ \\ &= \int_{-\infty}^{\infty}\dfrac{1}{x - \dfrac{a}{2\pi i m}}\Pi\left(x-\frac{1}{2}\right)e^{-2\pi i mx}dx\\ \\ &= \mathscr{F}\left\{\dfrac{1}{x - \dfrac{a}{2\pi i m}}\cdot\Pi\left(x-\frac{1}{2}\right)\right\}\\ \\ &= \mathscr{F}\left\{\dfrac{1}{x - \dfrac{a}{2\pi i m}}\right\} * \mathscr{F}\left\{\Pi\left(x-\frac{1}{2}\right)\right\}\\ \\ &= -i\pi e^{-2\pi i m \frac{a}{2\pi i m}}\left[\mathrm{sgn}(m)-\mathrm{sgn}\left(\Im\left[\dfrac{a}{2\pi i m}\right]\right)\right] * e^{-i\pi m}\mathrm{sinc}(m)\\ \\ &= -i\pi e^{-a}\left[1-\mathrm{sgn}\left(\Im\left[\dfrac{-ia}{2\pi}\right]\right)\right]\mathrm{sgn}(m) * e^{-i\pi m}\mathrm{sinc}(m)\\ \\ &= -i\pi e^{-a}\left[1+\mathrm{sgn}\left(\Re\left[a\right]\right)\right]\mathrm{sgn}(m) * e^{-i\pi m}\mathrm{sinc}(m)\\ \\ &= -i\pi e^{-a}\left[1+\mathrm{sgn}\left(\Re\left[a\right]\right)\right]\left[2H(m)-1\right] * e^{-i\pi m}\mathrm{sinc}(m)\\ \\ &= -i\pi e^{-a}\left[1+\mathrm{sgn}\left(\Re\left[a\right]\right)\right]\int_{-\infty}^\infty \left[2H(m-\tau)-1\right] e^{-i\pi \tau}\mathrm{sinc}(\tau)\space d\tau \\ \\ &= -i\pi e^{-a}\left[1+\mathrm{sgn}\left(\Re\left[a\right]\right)\right]\left[2\int_{-\infty}^\infty H(m-\tau) e^{-i\pi \tau}\mathrm{sinc}(\tau)\space d\tau - \int_{-\infty}^\infty e^{-i\pi \tau}\mathrm{sinc}(\tau)\space d\tau\right] \\ \\ &= -i\pi e^{-a}\left[1+\mathrm{sgn}\left(\Re\left[a\right]\right)\right]\left[2\int_{-\infty}^m e^{-i\pi \tau}\mathrm{sinc}(\tau)\space d\tau - \int_{-\infty}^\infty e^{-2\pi is \tau}\mathrm{sinc}(\tau)\space d\tau\biggr|_{s=\frac{1}{2}}\right] \\ \\ &= -i\pi e^{-a}\left[1+\mathrm{sgn}\left(\Re\left[a\right]\right)\right]\left[2\int_{-\infty}^m e^{-i\pi \tau}\mathrm{sinc}(\tau)\space d\tau - \Pi(s)\biggr|_{s=\frac{1}{2}}\right] \\ \\ &= -i\pi e^{-a}\left[1+\mathrm{sgn}\left(\Re\left[a\right]\right)\right]\left[2\int_{-\infty}^m e^{-i\pi \tau}\mathrm{sinc}(\tau)\space d\tau - \dfrac{\Pi\left({\frac{1}{2}}^-\right)+ \Pi\left({\frac{1}{2}}^+\right)}{2}\right] \\ \\ &= -i\pi e^{-\Re(a)}e^{-i\Im(a)}\left[1+\mathrm{sgn}\left(\Re\left[a\right]\right)\right]\left[2\int_{-\infty}^m e^{-i\pi \tau}\mathrm{sinc}(\tau)\space d\tau - \dfrac{1}{2}\right] \\ \\ &= \left[1+\mathrm{sgn}\left(\Re\left[a\right]\right)\right]\pi e^{-\Re(a)}\left[-\sin\left(\Im[a]\right)-i\cos\left(\Im[a]\right)\right]\left[2\int_{-\infty}^m e^{-i\pi \tau}\mathrm{sinc}(\tau)\space d\tau - \dfrac{1}{2}\right] \\ \\ \end{align*}$$

If $\Re(a) < 0$, then $f(m,a) = 0$.

Also $\lim_{\Re(a) \to \infty} f(m,a) = 0$.

For $\Re(a) \ge 0$, as $m \to \infty$

$$\begin{align*}\lim_{m \to \infty} f(m,a) &= \lim_{m \to \infty} \left[1+\mathrm{sgn}\left(\Re\left[a\right]\right)\right]\pi e^{-\Re(a)}\left[-\sin\left(\Im[a]\right)-i\cos\left(\Im[a]\right)\right]\left[2\int_{-\infty}^m e^{-i\pi \tau}\mathrm{sinc}(\tau)\space d\tau - \dfrac{1}{2}\right] \\ \\ &= \left[1+\mathrm{sgn}\left(\Re\left[a\right]\right)\right]\pi e^{-\Re(a)}\left[-\sin\left(\Im[a]\right)-i\cos\left(\Im[a]\right)\right]\left[2\int_{-\infty}^\infty e^{-i\pi \tau}\mathrm{sinc}(\tau)\space d\tau - \dfrac{1}{2}\right] \\ \\ &= \left[1+\mathrm{sgn}\left(\Re\left[a\right]\right)\right]\pi e^{-\Re(a)}\left[-\sin\left(\Im[a]\right)-i\cos\left(\Im[a]\right)\right]\left[2\Pi(s)|_{s=\frac{1}{2}} - \dfrac{1}{2}\right] \\ \\ &= \dfrac{\left[1+\mathrm{sgn}\left(\Re\left[a\right]\right)\right]}{2}\pi e^{-\Re(a)}\left[-\sin\left(\Im[a]\right)-i\cos\left(\Im[a]\right)\right] \\ \\ \end{align*}$$

which should make obvious the value to which $\Re[f(m,a)]$ is converging.

Unfortunately, the integral

$$\int_{-\infty}^m e^{-i\pi \tau}\mathrm{sinc}(\tau)\space d\tau$$

is problematic for finite $m$. The real part converges rapidly to $\frac{1}{2}$. However, I suspect its imaginary part diverges because $\Im\left[\frac{i \log(-\infty)}{2\pi}\right] \to \infty$. So I don't know how to compute it for finite $m$.

$\endgroup$
10
  • $\begingroup$ This seems helpful. I will take a deeper look at it during these days, thank you! $\endgroup$ Commented Feb 4, 2019 at 15:06
  • $\begingroup$ You're welcome. If it helps, Wolfram Alpha comes up with a "closed" form for the anti-derivative for that problematic integrand: wolframalpha.com/input/… $\endgroup$
    – Andy Walls
    Commented Feb 4, 2019 at 19:47
  • $\begingroup$ Well, this result seems not to be correct, since $$\int_{-\infty}^m e^{-i\pi \tau}\mathrm{sinc}(\tau)\space d\tau$$ does diverge $\endgroup$ Commented Feb 4, 2019 at 20:56
  • $\begingroup$ Well, in fact the problem comes from the step where you apply the convolution theorem, since the imaginary part of the convolucion of the Fourier Transform of both functions does not converge (the real part does). $\endgroup$ Commented Feb 4, 2019 at 21:24
  • $\begingroup$ On the other hand, this approach can be useful, since, as $$\dfrac{1}{x - \dfrac{a}{2\pi i m}}\cdot\Pi\left(x-\frac{1}{2}\right)$$ is absolutely integrable, the existence of its Fourier Transform is guaranteed $\endgroup$ Commented Feb 4, 2019 at 21:34
1
$\begingroup$

Assume that $a$ is fixed and has a positive real part. Take the incomplete gamma function $\Gamma(0, z)$ to have the branch cut along the negative real axis and to be continuous from above on the branch cut. Then $$\int_0^{2 \pi i m} \frac {e^{-t}} {t - a} dt = e^{-a} \int_{-a}^{-a + 2 \pi i m} \frac {e^{-t}} t dt = \\ e^{-a} (\Gamma(0, -a) - \Gamma(0, -a + 2 \pi i m) - 2 \pi i \,[\operatorname{Im} a > 0]),$$ since the antiderivative $-\Gamma(0, t)$ has a $2 \pi i$ jump if the segment $[-a, -a + 2 \pi i m]$ crosses the branch cut.

Then, from known asymptotics of $\Gamma(0, z)$, $$\int_0^{2 \pi i m} \frac {e^{-t}} {t - a} dt = e^{-a} (\Gamma(0, -a) - 2 \pi i \,[\operatorname{Im} a > 0]) - \frac 1 {2 \pi i m} + O {\left( \frac 1 {m^2} \right)}, \\ m \to \infty, \; m \in \mathbb N.$$ The real part will not contain the $1/(2 \pi i m)$ term.

$\endgroup$

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .