2
$\begingroup$

I am struggling with solving sum of this alternate series:

$$ \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n(n+1)}\ $$

I know that:

$$ \log(1+x) = \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n} \cdot x^n\ $$

But It seems that I can't find a way to get to this form. Thanks.

$\endgroup$
2
  • $\begingroup$ your sum has the value $$-1+2\ln(2)$$ $\endgroup$ Commented Apr 15, 2017 at 17:17
  • $\begingroup$ Yes I know that, Wolframalpha gives me the same result but I don't know how to get there. Thanks anyway. $\endgroup$ Commented Apr 15, 2017 at 17:25

2 Answers 2

5
$\begingroup$

It is well-known fact that

$${ \sum _{ n=1 }^{ \infty }{ \frac { (-1)^{ n+1 } }{ n } } =\ln { 2 } . }$$

So $$\sum _{ n=1 }^{ \infty } \frac { (-1)^{ n+1 } }{ n(n+1) } =\sum _{ n=1 }^{ \infty } \left( \frac { (-1)^{ n+1 } }{ n } -\frac { (-1)^{ n+1 } }{ n+1 } \right) =\sum _{ n=1 }^{ \infty } \frac { (-1)^{ n+1 } }{ n } -\sum _{ n=1 }^{ \infty } \frac { (-1)^{ n+1 } }{ n+1 } =\left( 1-\frac { 1 }{ 2 } +\frac { 1 }{ 3 } -\frac { 1 }{ 4 } +.. \right) -\left( \frac { 1 }{ 2 } -\frac { 1 }{ 3 } +\frac { 1 }{ 4 } +.. \right) =\\ =\ln { 2 } -\left( -\ln { 2 } +1 \right) =2\ln { 2 } -1\\ $$

$\endgroup$
3
$\begingroup$

Hint. Due to properties of power series, one is allowed to write $$ \begin{align} \sum_{n=1}^\infty\frac{(-1)^{n+1}}{n(n+1)}&=\sum_{n=1}^\infty\frac{(-1)^{n+1}}{n}\int_{0}^1t^{n}dt \\\\&=\int_{0}^1\sum_{n=1}^\infty\frac{(-1)^{n+1}t^{n}}{n}\:dt \\\\&=\int_0^1\ln(1+t)dt \end{align} $$ Can you finish it?

$\endgroup$
2
  • $\begingroup$ Yes I got the result 2ln(2)-1. Thank you very much for your help. So 1/(n+1) got replaced by inegral(t^n dt)? Can you tell me how to define boundaries of integral? $\endgroup$ Commented Apr 15, 2017 at 17:56
  • 1
    $\begingroup$ @AdnanSelimovic You are welcome. We have, for $n\ge0$, $$\int_0^1 t^n dt=\left[\frac{t^{n+1}}{n+1}\right]_0^1=\frac{1^{n+1}}{n+1}-\frac{0^{n+1}}{n+1} =\frac{1}{n+1}.$$ $\endgroup$ Commented Apr 15, 2017 at 17:59

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .