5
$\begingroup$

Are there any studies about this function? $$f(x,n)=\sum_{k=1}^{n} x^{1/k}=x+x^{1/2}+x^{1/3}+x^{1/4}+\cdots +x^{1/n}$$

EDIT:

My first notes about it.

$f(1,n)=n$

$f'(1,n)=H_n$

$\int_0^1 \frac{f(x,n)}x\cdot dx=\frac{n^2+n}2$

where $f'(x,n)=\frac{d}{dx}f(x,n)$

To avoid fractional powers we can let $x=y^{n!}$ to change it into integer-powers, but the obtained polynomial does not have uniform paterm of powers.

$$f(y,n)=\sum_{k=1}^{n}y^{n!/k}=y^{n!}+y^{n!/2}+y^{n!/3}+y^{n!/4}+\cdots+y^{n!/n}$$ $$=y^{n!/n}\left(y^{n!-(n!/n)}+y^{(n!/2)-(n!/n)}+y^{(n!/3)-(n!/n)}+y^{(n!/4)-(n!/n)}+\cdots+y^{(n!/(n-1))-(n!/n)}+1\right)$$

As example let $n=4$ $$f(y,4)=y^6(y^{18}+y^6+y^2+y+1)$$

$\endgroup$
0

1 Answer 1

1
$\begingroup$

Beside the bounds @Simply Beautiful Art gave in comments, you could use the simplest form of Euler-MacLaurin summation and obtain $$f(x,n) \sim n +\log(x) \log(n)+ A(x) -\frac{(\log (x)-1) \log (x)}{2 n}+O\left(\frac{1}{n^2}\right)$$ where $$A(x)=\frac {1-x}2+\log (x) (\text{li}(x)-\log (\log (x))-\gamma +1)+x\log(x) P(x)$$ where $$P(x)=\frac{-\log ^6(x)-42 \log ^5(x)-590 \log ^4(x)-3400 \log ^3(x)-9480 \log ^2(x)-15600 \log (x)+90480}{1209600}$$

Using the above $f(e,1000)=\color{red}{1008.5}04$

$\endgroup$

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .