5
$\begingroup$

Let $x,y,z$ be positive real numbers such that $x^2y^2+y^2z^2+z^2x^2\ge x^2y^2z^2$.

Find the minimum value of $$\frac{x^2y^2} {z^3(x^2+y^2)}+\frac {y^2z^2} {x^3(y^2+z^2)}+\frac {z^2x^2} {y^3(z^2+x^2)}$$ I'm pretty sure that the answer would be $\frac {\sqrt {3}} {2}$, when all parameters are $\sqrt {3}$. But I couldn't prove it after some hours of thinking. So can anyone help me? Any help would be welcome. Thanks:D.

$\endgroup$

2 Answers 2

5
$\begingroup$

Let $$a=\dfrac{1}{x},b=\dfrac{1}{y},c=\dfrac{1}{z},a^2+b^2+c^2\ge 1$$ Use Cauchy-Schwarz $$\sum_{cyc}\dfrac{x^2y^2}{z^3(x^2+y^2)}=\sum_{cyc}\dfrac{c^3}{(a^2+b^2)}\ge \dfrac{(a^2+b^2+c^2)^2}{c(a^2+b^2)+a(b^2+c^2)+b(c^2+a^2)}$$ since $$c(a^2+b^2)+a(b^2+c^2)+b(c^2+a^2)\le\dfrac{2}{3}(a+b+c)(a^2+b^2+c^2)\le\dfrac{2}{\sqrt{3}}(a^2+b^2+c^2)^{\frac{3}{2}}$$ so $$LHS\ge \dfrac{\sqrt{3}}{2}\sqrt{a^2+b^2+c^2}\ge\dfrac{\sqrt{3}}{2}$$

$\endgroup$
3
  • $\begingroup$ Cauchy-Schwarz refers to the fact that the square of the sum of products is smaller than the product of the sums of squares. Could you please elaborate more on how you obtained the second row ? $\endgroup$
    – Lucian
    Commented Oct 26, 2015 at 21:41
  • $\begingroup$ math110 thank you very much:). The second row is from Chebychev and QM-AM inequality Lucian. $\endgroup$
    – Ahmbak
    Commented Oct 27, 2015 at 1:03
  • $\begingroup$ yes, that's your mean.@Riverboat $\endgroup$
    – math110
    Commented Oct 27, 2015 at 2:42
0
$\begingroup$

If $x=y=z=\sqrt3$ then we get a value $\frac{\sqrt3}{2}$.

We'll prove that it's a minimal value, for which it's enough to prove that $$\sum_{cyc}\frac{y^2z^2}{x^3(y^2+z^2)}\geq\frac{\sqrt3}{2}\cdot\sqrt{\frac{x^2y^2+x^2z^2+y^2z^2}{x^2y^2z^2}}$$ or

$$\sum_{cyc}\frac{y^3z^3}{x^2(y^2+z^2)}\geq\frac{\sqrt3}{2}\cdot\sqrt{x^2y^2+x^2z^2+y^2z^2}.$$ Let $xy=c$, $xz=b$ and $yz=a$ and since our inequality is homogeneous,

we can assume that $a^2+b^2+c^2=3$.

Thus, we need to prove that $$\sum_{cyc}\frac{a^3}{3-a^2}\geq\frac{3}{2}$$ or $$\sum_{cyc}\left(\frac{a^3}{3-a^2}-\frac{1}{2}\right)\geq0$$ or $$\sum_{cyc}\frac{(a-1)(2a^2+3a+3)}{3-a^2}\geq0$$ or $$\sum_{cyc}\left(\frac{(a-1)(2a^2+3a+3)}{3-a^2}-2(a^2-1)\right)\geq0$$ or $$\sum_{cyc}\frac{(a-1)^2(2a^2+6a+3)}{3-a^2}\geq0.$$ Done!

$\endgroup$

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .