5
$\begingroup$

I must proof the "Trichotomy Law for Real Numbers":

  • Prop. 1: let be $\Bbb{R}$ a complete ordered field, then $$\forall x,y \in \Bbb{R}(x=y \vee x < y \vee x > y)$$
  • Proof 1: by definition of $ \Bbb{R} $, $\geq$ (or $\leq$) is total relation therefore $$\forall x,y \in \Bbb{R}(x \geq y \vee x \leq y) $$ but $x \geq y \leftrightarrow x=y \vee x >y$ then $$\forall x,y \in \Bbb{R}(x < y \vee x > y \vee x=y) $$

But (Prop. 2) $\forall x,y \in \Bbb{R}$ exactly one of the following holds:

  • $x=y$
  • $x<y$
  • $x>y$

therefore $$\forall x,y \in \Bbb{R}(\mbox{ or } x=y \mbox{ or } x < y \mbox{ or } x > y)$$ where $(\mbox{ or } x=y \mbox{ or } x < y \mbox{ or } x > y)$ is "logically" CLIC...

How can I proof the Prop. 2? I thought proof the following:

  • $x=y \leftrightarrow x \ngtr y \wedge x \nless y$
  • $x <y \leftrightarrow x \neq y \wedge x \ngtr y$
  • $x>y \leftrightarrow x \neq y \wedge x \nless y$

because CLIC is equivalente to eq_CLIC

Is it correct? Thanks in advance!

$\endgroup$

1 Answer 1

3
$\begingroup$

If you look at it like so:

  • $x=y \leftrightarrow (x \le y \wedge y \le x)$
  • $x<y \leftrightarrow x \le y \wedge \neg(x \le y \wedge y \le x)$
  • $x>y \leftrightarrow y \le x \wedge \neg(x \le y \wedge y \le x)$

Combining any two will yield a $(x \le y \wedge y \le x)$ and a $\neg(x \le y \wedge y \le x)$

Also since $\le$ is a total relation, if $(x \le y \wedge y \le x)$ is false, one of the last two must be true. Hence at least one of three is true.

$\endgroup$
2
  • $\begingroup$ thanks soo much. :) I edited my post, It is correct? $\endgroup$
    – mle
    Commented Mar 3, 2014 at 12:25
  • $\begingroup$ I don't know what you mean by CLIC. Anyway I added the missing half of the argument to my answer. $\endgroup$
    – Neil W
    Commented Mar 3, 2014 at 12:59

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .