4
$\begingroup$

I encountered the following series while evaluating an integral

\begin{equation} \sum_{n=1}^\infty\binom{n}{n/2}\frac{(-1)^{n}}{n(2a)^n}, \quad a\in\mathbb{R} \end{equation}

and am looking for a closed form. I have looked up generating functions and found some close candidates such as,

\begin{equation} \sum_{n=1}^\infty\binom{2n}{n}\frac{x^n}{4^nn} = 2\log\left(\frac{2}{1+\sqrt{1-x}}\right) \end{equation}

but I can't figure out how to deal with the $\binom{n}{n/2}$ term. Looking at the power series for $(1+x)^n$, I assume finding such a function may be difficult, but I hope a closed form exists.

I will be happy to add my evaluation of the original integral up to the point where the series appears, if that may be necessary.

Thank you in advance.


Edit:

Here is the integral I was evaluating, $$J(a)=\int_0^{\pi/2}\log\left(1+\frac{\sin x}{a}\right)\ dx,\quad a\in\mathbb{R}$$ which comes from this post, and the derivations of the series are in my answer there. I hope this helps @ClaudeLeibovici.

$\endgroup$
6
  • $\begingroup$ The terms in your sum are only defined for even $n$. What do you intend for the binomial coefficient for odd $n$, perhaps rounding down: $\lfloor n/2 \rfloor$? $\endgroup$ Commented Jul 29, 2023 at 23:14
  • 1
    $\begingroup$ @SammyBlack. Correct me if I'm wrong but I thought the binomial coefficient, $$\binom{n}{n/2}=\frac{\Gamma(n+1)}{\Gamma(n/2+1)\Gamma(n-n/2+1)}$$ will be defined for odd $n$, as positive half integer arguments of the Gamma function have an exact formula (en.wikipedia.org/wiki/Particular_values_of_the_gamma_function), $$\Gamma(n/2)=\frac{\sqrt\pi(n-2)!!}{2^{(n-1)/2}}.$$ $\endgroup$
    – bob
    Commented Jul 29, 2023 at 23:33
  • 4
    $\begingroup$ If $n=2k-1$,$$\binom n{\frac n2}=\binom{2k-1}{k-\frac12}=\frac{2^{4k}}\pi \frac{(2k-1)! (k!)^2 }{\left((2k)!\right)^2}=\frac{2^{4k-1}}{\pi k \binom{2k}k}$$which is closely related to the derivative of $\arcsin^2x$; see here $\endgroup$
    – user170231
    Commented Jul 29, 2023 at 23:54
  • 1
    $\begingroup$ $$S_k(x)=\sum_{n=1}^\infty \binom{n}{\frac{n}{2}}\frac{x^n}{n^k}$$ is the sum of two hypergeometric functions (at least for integer values of $k$). $k=1$ is a particular case. $\endgroup$ Commented Aug 1, 2023 at 5:48
  • $\begingroup$ Could you post the integral ? Thanks & cheers :-) $\endgroup$ Commented Aug 2, 2023 at 6:54

2 Answers 2

3
$\begingroup$

Let $x=-\frac 1 {2a}$ and consider $$S(x)=\sum_{n=1}^\infty \binom{n}{\frac{n}{2}}\frac{x^n}{n} $$ $$S'(x)=\sum_{n=1}^\infty \binom{n}{\frac{n}{2}}x^{n-1}=\frac{1}{x \sqrt{1-4 x^2}}-\frac{1}{x}+\frac{2 \sin ^{-1}(2 x)}{\pi x \sqrt{1-4 x^2}}$$ Integrating (do not forget the integration constant which is $\log(2)$) $$S(x)=\log \left(\frac{1-\sqrt{1-4 x^2}}{2 x^2}\right)+\frac 2 \pi \int \frac{\sin ^{-1}(2 x)}{ x \sqrt{1-4 x^2}}\,dx$$ Now, the problem is $$I=\int \frac{\sin ^{-1}(2 x)}{ x \sqrt{1-4 x^2}}\,dx$$ Integrating by parts $$I=-\sin ^{-1}(2 x) \tanh ^{-1}\left(\sqrt{1-4 x^2}\right)+2\int \frac{\tanh ^{-1}\left(\sqrt{1-4 x^2}\right)}{\sqrt{1-4 x^2}}\,dx$$ $$J=\int \frac{\tanh ^{-1}\left(\sqrt{1-4 x^2}\right)}{\sqrt{1-4 x^2}}\,dx$$ Using $t=\tanh ^{-1}\left(\sqrt{1-4 x^2}\right)$ $$J=-i\frac{x}{\sqrt{x^2}}\left(t\, \log \left(\frac{e^t-i}{e^t+i}\right)+\text{Li}_2\left(-i e^{-t}\right)-\text{Li}_2\left(i e^{-t}\right) \right)$$

Edit

From a formal point of view, the best expression is $$S(x)=\log \left(\frac{1-\sqrt{1-4 x^2}}{2 x^2}\right)+\frac {4x} \pi \,\, _3F_2\left(\frac{1}{2},1,1;\frac{3}{2},\frac{3}{2};4 x^2\right)$$ which has been obtained separating the odd and even terms.

So, the sum is title is $$\large\color{blue}{\log \left(2 a \left(a-\sqrt{a^2-1}\right)\right)-\frac{2}{a\pi }\,\, _3F_2\left(\frac{1}{2},1,1;\frac{3}{2},\frac{3}{2};\frac{1}{a^2}\right)}$$

$\endgroup$
9
  • 1
    $\begingroup$ @bob. I am always glad to help and to share the little I know with others. Cheers :-) $\endgroup$ Commented Jul 30, 2023 at 6:59
  • 1
    $\begingroup$ @bob. I shall look AT tomorrow early morning (almost dinner Time hère). $\endgroup$ Commented Jul 30, 2023 at 14:50
  • 2
    $\begingroup$ @bob. I forgot the integration constant which is $\log(2)$. If you check your numbers $$−0.11832457681+0.81147175737=0.69314718056=\log(2)$$ $\endgroup$ Commented Jul 31, 2023 at 2:45
  • 1
    $\begingroup$ @bob. In terms of $x$, the function is much nicer than in terms of $a$. Plot the two functions. $\endgroup$ Commented Jul 31, 2023 at 5:45
  • 1
    $\begingroup$ @bob. Being blind, I am unable to produce decent plots. I think that it could be a good idea you add them in your post. Cheers :-) $\endgroup$ Commented Jul 31, 2023 at 8:37
1
$\begingroup$

Replacing the binomial coefficients by gamma functions, making the problem more general, at least for positive integer values of $k$, $$S_k(x)=\sum_{n=1}^\infty \binom{n}{\frac{n}{2}}\frac{x^n}{n^k}$$ write as the sum of two hypergeometric functions $$\color{blue}{S_2(x)=\frac{x^2}{2} \, _4F_3\left(1,1,1,\frac{3}{2};2,2,2;4 x^2\right)+}$$ $$\color{blue}{\frac {4x}\pi \, _4F_3\left(\frac{1}{2},\frac{1}{2},1,1;\frac{3}{2},\frac{3}{2 },\frac{3}{2};4 x^2\right)}$$ $$S_3(x)=\frac{x^2}{4} \, _5F_4\left(1,1,1,1,\frac{3}{2};2,2,2,2;4 x^2\right)+$$ $$\frac {4x}\pi \, _5F_4\left(\frac{1}{2},\frac{1}{2},\frac{1}{2},1,1;\frac{3}{2 },\frac{3}{2},\frac{3}{2},\frac{3}{2};4 x^2\right)$$ $$\color{blue}{S_4(x)=\frac{x^2}{8} \, _6F_5\left(1,1,1,1,1,\frac{3}{2};2,2,2,2,2;4 x^2\right)+}$$ $$\color{blue}{\frac {4x}\pi \, _6F_5\left(\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},1, 1;\frac{3}{2},\frac{3}{2},\frac{3}{2},\frac{3}{2},\frac{3}{2} ;4 x^2\right)}$$ and we probably could conjecture what is $S_k(x)$ looking at the very simple patterns.

$\endgroup$
3
  • $\begingroup$ Do you believe this is worth conjecturing? $\endgroup$
    – bob
    Commented Aug 1, 2023 at 11:48
  • $\begingroup$ @bob. Yes, I think $\endgroup$ Commented Aug 1, 2023 at 13:46
  • $\begingroup$ Ok that is exciting. However, I have little experience with the Hypergeometric function so I do not know what exactly to conjecture. Is it possible that you write the conjecturing post? If not, I am happy to do so as long as I have time to do a little more research. $\endgroup$
    – bob
    Commented Aug 1, 2023 at 16:06

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .