1
$\begingroup$

So I was perusing wikipedia for some floor function facts for a problem I am working on and I saw this:

Let $x,y\in \mathbb{R}$ $$\lfloor x\rfloor +\lfloor y\rfloor \leq \lfloor x+y\rfloor \leq \lfloor x\rfloor +\lfloor y\rfloor +1$$

However when I adapted my problem to this

Let $n,m,k\in \mathbb{Z},k\neq0$ $$\lfloor \frac{n}{k}\rfloor +\lfloor \frac{m}{k}\rfloor \leq \lfloor \frac{n}{k}+\frac{m}{k}\rfloor \leq \lfloor \frac{n}{k}\rfloor +\lfloor \frac{m}{k}\rfloor +1$$

I really didn't want to work with the inequalities, so I devised an equality that encompasses the idea from above as

$$\lfloor\frac{n+m}{k}\rfloor=\lfloor\frac{n}{k}\rfloor+\lfloor\frac{m}{k}\rfloor+\lfloor\lbrace\frac{n}{k}\rbrace+\lbrace\frac{m}{k}\rbrace\rfloor$$

$\lfloor num \rfloor$ is the floor of num and $\lbrace num \rbrace$ is the fractional component of num

However, I don't know if it this is true. So help on a proof of the last equation would be much appreciated.

Bonus points if we can also figure out if the equality is true or not for $n,m,k\in \mathbb{R},k\neq0$

Thanks in advanced!


Edit: I wanted a go at the proof after seeing the answer too, so check below for the alternate proof

Let $x,y\in \mathbb{R}$ and let $n\in \mathbb{Z}$

We will use the fact that $x = \lfloor x \rfloor + \lbrace x \rbrace$ and $\lfloor x + n \rfloor = \lfloor x \rfloor + n$.

So $\lfloor x + y \rfloor = \lfloor \lfloor x \rfloor + \lbrace x \rbrace + \lfloor y \rfloor + \lbrace y \rbrace \rfloor$

then commute $\lfloor \lfloor x \rfloor + \lbrace x \rbrace + \lfloor y \rfloor + \lbrace y \rbrace \rfloor= \lfloor \lbrace x \rbrace + \lbrace y \rbrace+ \lfloor x \rfloor + \lfloor y \rfloor \rfloor$

and we know that $\lfloor x \rfloor,\lfloor y \rfloor \in \mathbb{Z}$

so by our second fact

$\lfloor \lbrace x \rbrace + \lbrace y \rbrace+ \lfloor x \rfloor + \lfloor y \rfloor \rfloor = \lfloor \lbrace x \rbrace + \lbrace y \rbrace+ \lfloor x \rfloor \rfloor + \lfloor y \rfloor$

$= \lfloor \lbrace x \rbrace + \lbrace y \rbrace \rfloor + \lfloor x \rfloor + \lfloor y \rfloor$

And rearrange to get

$\lfloor x + y \rfloor = \lfloor x \rfloor + \lfloor y \rfloor + \lfloor \lbrace x \rbrace + \lbrace y \rbrace \rfloor$

$\endgroup$
0

2 Answers 2

1
$\begingroup$

To prove : for $A,B \in \Bbb{R} $
$\lfloor(A + B)\rfloor = \lfloor A\rfloor + \lfloor B\rfloor + \lfloor \{A\} + \{B\}\rfloor.$

By definition:
$A = \lfloor A\rfloor + \{A\}.$
$B = \lfloor B\rfloor + \{B\}.$

Therefore, $$(A + B) = \lfloor A\rfloor + \lfloor B\rfloor + \{A\} + \{B\}. \tag1$$

Also, since $0 \leq \{A\},\{B\} < 1$
$0 \leq \{A\} + \{B\} < 2.$

Also, if $P \in \Bbb{R}$ and $z \in \Bbb{Z}$ such that
$0 \leq (P - z) < 1$ then $\lfloor P\rfloor = z.$

Consider two cases separately.

$\underline{\text{Case 1:}~~0 \leq \{A\} + \{B\} < 1}$

Then

  • $\lfloor \{A\} + \{B\}\rfloor = 0$

  • Using equation (1) above, $0 \leq (A + B) - (\lfloor A\rfloor + \lfloor B\rfloor) < 1. $

Therefore,
$\lfloor (A + B)\rfloor = \lfloor A\rfloor + \lfloor B\rfloor = \lfloor A\rfloor + \lfloor B\rfloor + \lfloor \{A\} + \{B\}\rfloor.$

Therefore, the assertion holds in Case 1.

$\underline{\text{Case 2:}~~1 \leq \{A\} + \{B\} < 2}$

Then

  • $\lfloor \{A\} + \{B\}\rfloor = 1$

  • Using equation (1) above, $0 \leq (A + B) - [(\lfloor A\rfloor + \lfloor B\rfloor) + 1]< 1. $

Therefore,
$\lfloor (A + B)\rfloor = \lfloor A\rfloor + \lfloor B\rfloor + 1 = \lfloor A\rfloor + \lfloor B\rfloor + \lfloor \{A\} + \{B\}\rfloor.$

Therefore, the assertion holds in Case 2.

$\endgroup$
0
$\begingroup$

Hint:

It holds for every $x,y\in\mathbb{R}$ that $$ \{x+y\} = \big\{ \{x\}+\{y\} \big\}. $$

$\endgroup$

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .