4
$\begingroup$

Problem:

Given $X, Y$ ~ $\text{Exp}(\lambda)$ i.i.d, find $f_U, \ F_U$ for $U := \frac{X}{X + Y}$.

My approach:

For a fixed $u > 0$, parameterize $\{ (x,y) | \frac{x}{x + y} = u \}$ = $\{ (x,y) | y = \frac{x (1 - u)}{u} \}$ = $\{ (x,\frac{x (1 - u)}{u}) | x \geq 0\}$ ($x \geq 0$ holds by $X$ ~ $\text{Exp}(\lambda)$).

Then, one can compute: $$\int_0^{+\infty}f_X(x) f_Y\left(\frac{x (1 - u)}{u}\right) \mathrm{d}x = \int_0^{+\infty} \lambda e^{-\lambda x} \lambda e^{-\lambda \frac{x (1 - u)}{u}} \mathrm{d}x = \lambda^2 \int_0^{+\infty} e^{-\lambda x \frac{1}{u}} \mathrm{d}x = \\ \lambda^2 \left(-\frac{u}{\lambda} e^{-\lambda x \frac{1}{u}} \biggr{\rvert}_0^{+\infty}\right) = \lambda^2 \left(\frac{u}{\lambda}\right) = \lambda u $$

My problem:

Given those computations, I arrived at the conclusion $f_U(u) = \lambda u$. Although Wolfram Alpha agrees with my computations, the master solution does not, as according to it $F_U (u) = u$ (and therefore $f_U = 1$).

It'd be great to get some help on where I went wrong. Given that Wolfram Alpha indicates correct computations, I believe my mistake to be conceptual.

On a general note: How would you rate my approach; are there better ways to tackle such problems?

$\endgroup$
2
  • $\begingroup$ A minimal search of the site gives math.stackexchange.com/q/412615/321264 and its countless linked posts. $\endgroup$ Commented Jul 16, 2020 at 6:18
  • $\begingroup$ I should have been more explicit on previous searches I had performed... I had indeed looked at that answer, though it is about the distribution and not density. Of course, one can (and that's what I settled with) compute the distribution and then take the derivative, though I wanted to directly compute the density. $\endgroup$
    – iMrFelix
    Commented Jul 16, 2020 at 12:40

4 Answers 4

3
$\begingroup$

Let $U={\large{\frac{X}{X+Y}}}$.

As you noted, $$ \frac{x}{x+y}\le u \iff y\ge \frac{x(1-u)}{u} $$ Using basically the same approach as in your attempt (and with some help from your comments), $F_U(u)$ can be computed as follows . . . \begin{align*} F_U(u) &= \int_0^\infty \int_{{\Large{\frac{x(1-u)}{u}}}}^\infty f_X(x)\,f_Y(y) \;dy \;dx \\[4pt] &= \int_0^\infty f_X(x) \left( \int_{{\Large{\frac{x(1-u)}{u}}}}^\infty f_Y(y) \;dy \right) \;dx \\[4pt] &= \int_0^\infty f_X(x) \,\left(1-F_Y\Bigl(\frac{x(1-u)}{u}\Bigr)\right) \;dx \\[4pt] &= \int_0^\infty \left( \left(\lambda e^{-\lambda x}\right) \left( e^ { -\lambda \left( {\Large{\frac{x(1-u)}{u}}} \right) } \right) \right) \;dx \\[4pt] \end{align*} which evaluates to $u$, hence \begin{align*} \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\! \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\! \!\!\!\! F_U(u)\, &= \begin{cases} 0&\text{if}\;\,u\le 0\\[4pt] u&\text{if}\;\,0 < u < 1\\[4pt] 1&\text{if}\;\,u\ge 1\\[4pt] \end{cases} \\[10pt] \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\! \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\! \!\!\!\! f_U(u) &= \begin{cases} 1&\text{if}\;\,0 < u < 1\\[4pt] 0&\text{otherwise}\\[4pt] \end{cases} \\[4pt] \end{align*}

$\endgroup$
7
  • $\begingroup$ Also $f_U(u){=\mathbf 1_{0<u<1}\cdotp\left\lvert\dfrac{\mathrm d ~~}{\mathrm d u}\int_0^\infty f_X(x) F_Y(x(u^{-1}-1))\mathrm d x\right\rvert\\=\mathbf 1_{0<u<1}\cdotp\int_0^\infty x u^{-2} f_X(x) f_Y(x(u^{-1}-1))\mathrm d x}$ $\endgroup$ Commented Jul 16, 2020 at 2:36
  • $\begingroup$ Thanks for the reply! I actually tried to compute the density function, though it proved in vain. Having just managed to compute the distribution as you suggested, it seems that your fix doesn't 100% fix the issue. It should be $1 - F_Y(\frac{x * (1 - u)}{u}$ instead of the $F_Y(\frac{1 - u}{u})$ as you suggested. That is because for $\frac{X}{X + Y} \leq u$, we want $Y \geq \frac{X * (1 - u)}{u}$ $\endgroup$
    – iMrFelix
    Commented Jul 16, 2020 at 12:36
  • $\begingroup$ @iMrFelix: Quite right, good catch! I corrected my post. Thanks $\endgroup$
    – quasi
    Commented Jul 16, 2020 at 13:18
  • $\begingroup$ @quasi are you sure about the distribution of $U$ follows uniform? $\endgroup$
    – Cantor_Set
    Commented Jul 16, 2020 at 14:22
  • $\begingroup$ @annie_lee: Yes, as comfirmed by the computed form of $F_U(u)$. But it does seem surprising. $\endgroup$
    – quasi
    Commented Jul 16, 2020 at 14:25
3
$\begingroup$

Hint:

Consider $U=X+Y$ and $V=\frac{X}{X+Y}$. $U$ and $V$ have joint distribution given by $$f_X(X(u,v))f_Y(Y(u,v)) J_\Phi(u,v)$$

where $J_\Phi(u,v)$ is the Jacobian determinant of the transformation $\Phi(u,v)=(uv,u-uv)$, and $f_X$, $f_Y$ are the density functions of $X$ and $Y$ (exponentials in your case)

$\endgroup$
2
$\begingroup$

We want to translate cordinates from $X,Y$ to $X,U$ where $U=X/(X+Y)$, this implies $Y=X(1/U-1)$.

So the Jacobian matrix, and its absolute determinant, are: $$\begin{align}\mathcal J(x,u)&=\dfrac{\partial\langle x, x(1/u-1)\rangle}{\partial\langle x,u\rangle}\\[1ex]&=\begin{bmatrix}\partial x/\partial x & \partial x/\partial u\\ \partial(x(1/u-1))/\partial x& \partial(x(1/u-1))/\partial u\end{bmatrix}\\[1ex]&=\begin{bmatrix}1 & 0\\ (1/u-1)& -x/u^2\end{bmatrix}\\[2ex]\lVert\mathcal J(x,u)\rVert&=\lvert x\rvert/u^2\end{align}$$

Now the support for the $X,U$ distribution is $\{\langle x,u\rangle: 0<x, 0<x(1/u-1)\}\\=\{\langle x,u\rangle: 0<x, 0<u<1\}$

Which means $x$ has a strictly positive support.

Thus the probability density function is evaluated as:

$$\begin{align}f_{\small X,U}(x,u) &= \lVert\mathcal J(x,u)\rVert f_{\small X,Y}(x, x(1/u-1))\\[1ex]&=\lambda^2~x~\mathrm e^{-\lambda x/u}/u^2\cdot \mathbf 1_{0<x, 0<u<1}\\[2ex]f_{\small U}(u) &=\dfrac{\lambda^2~\mathbf 1_{ 0<u<1}}{u^2\qquad}\int_0^\infty x\,\mathrm e^{-x\lambda/u}\mathrm d x\\[1ex]&=\mathbf 1_{0<u<1} \end{align}$$

Therefore $U$ has a standard continuous uniform distribution. $U\sim\mathcal U(0..1)$, so:

$$F_{\small U}(u)= u\,\mathbf 1_{0\leqslant u<1}+\mathbf 1_{1\leqslant u}$$

$\endgroup$
0
1
$\begingroup$

Hint: I use some standerd transformation, $$U= \frac{X}{(X+Y)} = \frac{1}{1 + \frac{Y}{X}}= \frac{1}{1+V}$$

$\frac{2X}{\lambda},\frac{2Y}{\lambda}\sim \chi^2_{(2)}$ independently. Therefore $V=\frac{Y}{X}\sim F_{(2,2)}$. Hence, $U\sim\operatorname{Beta}(1,1)\equiv U(0,1)$.

Here pdf of $F_{(2,2)}$, $$ f(v)=\frac{1}{\operatorname{Beta}(1,1)} (1+v)^{-2} = \frac{1}{(1+v)^2} $$

$\endgroup$
3
  • 1
    $\begingroup$ Well, to confirm: $V=X/Y\implies X=VY$ so $$\begin{align}f_{V,Y}(v,y)&=\left\lVert\dfrac{\partial\langle vy,y\rangle}{\partial\langle v,y\rangle}\right\rVert f_{X}(vy)f_Y(y)\mathbf 1_{0\lt vy, 0\lt y}\\[1ex]&=\lambda^2y\mathrm e^{-\lambda (v+1)y}\mathbf 1_{0<v}\mathbf 1_{0<y}\\[2ex]f_{V}(v)&=\int_0^\infty \lambda^2y\mathrm e^{-\lambda(v+1)y}\mathrm 1_{0<v}\mathrm dy\\[1ex]&=(v+1)^{-2}\mathbf 1_{0<v}\end{align}$$ $\endgroup$ Commented Jul 16, 2020 at 15:14
  • $\begingroup$ @GrahamKemp yeah.. thanks for commenting $\endgroup$
    – Cantor_Set
    Commented Jul 16, 2020 at 15:16
  • $\begingroup$ Thence, similarly, $U=(1+V)^{-1}\implies V=U^{-1}-1$, which means $$\begin{align}f_U(u)&=\left\lvert\dfrac{\mathrm d (u^{-1}-1)}{\mathrm d u}\right\rvert f_V(u^{-1}-1)\\[1ex]&= u^{-2}\cdot u^2\mathbf 1_{0<u^{-1}-1}\\[1ex]&=\mathbf 1_{0<u<1}\end{align}$$ $\endgroup$ Commented Jul 16, 2020 at 15:28

Not the answer you're looking for? Browse other questions tagged .