8
$\begingroup$

where $H_n$ is the harmonic number and can be defined as:

$H_n=1+\frac12+\frac13+...+\frac1n$

$H_n^{(2)}=1+\frac1{2^2}+\frac1{3^2}+...+\frac1{n^2}$

again, my goal of posting these two challenging sums is to use them as a reference.

I will provide my solutions soon.

I would like to mention that these two sums can also be found in Cornel's book " almost impossible integrals, sums, and series".

$\endgroup$
6
  • 1
    $\begingroup$ (+1) for the question. Love to see more solutions. $\endgroup$ Commented Jun 5, 2019 at 13:13
  • $\begingroup$ @user97357329 I will try to post today. $\endgroup$ Commented Jun 5, 2019 at 18:25
  • $\begingroup$ Possible repetitions math.stackexchange.com/questions/2169507/… $\endgroup$ Commented Jun 6, 2019 at 6:40
  • $\begingroup$ @Dr. Wolfgang Hintze nice link but I dont think it helps us here to solve our two sums. if you think there is a helpful formula in the link you provided, would you spot it for us? $\endgroup$ Commented Jun 6, 2019 at 11:05
  • $\begingroup$ @ Ali Shather It is not only nice but - for the linear case - very comprehensive, and it would have been nice and good practice if you would have quoted previous work of Prztemo and point out to the reader what is really new. Also you might wish to discover your linear formula by yourself in the solution math.stackexchange.com/a/2264045/198592 $\endgroup$ Commented Jun 6, 2019 at 12:19

4 Answers 4

4
$\begingroup$

Both series are calculated by simple real techniques in the book, (Almost) Impossible Integrals, Sums, and Series,

$$a) \ \sum_{n=1}^{\infty} (-1)^{n-1}\frac{H_n^{(2)}}{n^3}=\frac{5}{8}\zeta(2)\zeta(3)-\frac{11}{32}\zeta(5);$$

$$b) \ \sum_{n=1}^{\infty} (-1)^{n-1}\frac{H_n^2}{n^3}$$ $$=\frac{2}{15}\log^5(2)-\frac{11}{8}\zeta(2)\zeta(3)-\frac{19}{32}\zeta(5)+\frac{7}{4}\log^2(2)\zeta(3)-\frac{2}{3}\log^3(2)\zeta(2)$$ $$+4\log(2)\operatorname{Li}_4\left(\frac{1}{2}\right)+4\operatorname{Li}_5\left(\frac{1}{2}\right).$$

$\endgroup$
1
  • $\begingroup$ Yes I forgot to mention that. And you can find tougher ones in that book. Anyway i solved these two sums and more long time ago and in a different approach. $\endgroup$ Commented Jun 5, 2019 at 17:48
3
$\begingroup$

Using the fact that $\displaystyle \sum_{n=1}^\infty x^nH_n^{(2)}=\frac{\operatorname{Li}_2(x)}{1-x}$

Replace $x$ with $-x$ then multiply both sides by $\ln^2x$ and integrate, we get \begin{align} S&=\sum_{n=1}^\infty (-1)^nH_n^{(2)}\int_0^1x^{n}\ln^2x\ dx=2\sum_{n=1}^\infty \frac{(-1)^nH_n^{(2)}}{(n+1)^3}=\underbrace{\int_0^1\frac{\ln^2x\operatorname{Li}_2(-x)}{1+x}\ dx}_{IBP}\\ &=\int_0^1\frac{\ln^2x \ln^2(1+x)}{x}\ dx-2\int_0^1\frac{\ln x\ln(1+x)\operatorname{Li}_2(-x)}{x}\ dx\\ &=I_1-2I_2 \end{align} Lets evaluate the first integral and using $\quad \ln^2(1+x)=2\sum_{n=1}^\infty (-1)^n\left(\frac{H_n}{n}-\frac{1}{n^2}\right)x^n,\quad $ we get \begin{align} I_1&=2\sum_{n=1}^\infty (-1)^n\left(\frac{H_n}{n}-\frac{1}{n^2}\right)\int_0^1x^{n-1}\ln^2x\ dx\\ &=2\sum_{n=1}^\infty (-1)^n\left(\frac{H_n}{n}-\frac{1}{n^2}\right)\left(\frac{2}{n^3}\right)\\ &=4\sum_{n=1}^\infty\frac{(-1)^nH_n}{n^4}-4\sum_{n=1}^\infty\frac{(-1)^n}{n^5}\\ &=4\sum_{n=1}^\infty\frac{(-1)^nH_n}{n^4}+\frac{15}{4}\zeta(5) \end{align} to evaluate the second integral, apply IBP , we get \begin{align} I_2&=\left.-\frac12\operatorname{Li}_2^2(-x)\ln x\right|_0^1+\frac12\int_0^1\frac{\operatorname{Li}_2^2(-x)}{x}\ dx\\ &=\frac12\int_0^1\frac{\operatorname{Li}_2^2(-x)}{x}\ dx\\ \end{align} I proved here $\quad \displaystyle \int_0^1\frac{\operatorname{Li}_2^2(-x)}{x}\ dx=\frac58\zeta(2\zeta(3)+\frac78\sum_{n=1}^\infty\frac{H_n}{n^4}+2\sum_{n=1}^\infty\frac{(-1)^nH_n}{n^4}$

Collecting these two integrals and using $\quad \displaystyle \sum_{n=1}^\infty\frac{H_n}{n^4}=3\zeta(5)-\zeta(2)\zeta(3),\quad$ we get $$\sum_{n=1}^\infty\frac{(-1)^nH_n^{(2)}}{(n+1)^3}=\frac9{16}\zeta(5)+\frac18\zeta(2)\zeta(3)+\sum_{n=1}^\infty\frac{(-1)^nH_n}{n^4}$$ but $$\sum_{n=1}^\infty\frac{(-1)^nH_n^{(2)}}{(n+1)^3}=\sum_{n=1}^\infty\frac{(-1)^{n-1}H_n^{(2)}}{n^3}-\frac{15}{16}\zeta(5)$$ Thus $$\sum_{n=1}^\infty\frac{(-1)^{n-1}H_n^{(2)}}{n^3}=\frac32\zeta(5)+\frac18\zeta(2)\zeta(3)+\sum_{n=1}^\infty\frac{(-1)^nH_n}{n^4}$$ Plugging $\sum_{n=1}^\infty\frac{(-1)^nH_n}{n^4}=\frac12\zeta(2)\zeta(3)-\frac{59}{32}\zeta(5)$ gives

$$\sum_{n=1}^\infty\frac{(-1)^{n-1}H_n^{(2)}}{n^3}=\frac58\zeta(2)\zeta(3)-\frac{11}{32}\zeta(5)$$

$\endgroup$
1
$\begingroup$

A much easier approach:

By Cauchy product we have

$$-\ln(1-x)\operatorname{Li}_2(x)=\sum_{n=1}^\infty\left(\frac{2H_n}{n^2}+\frac{H_n^{(2)}}{n}-\frac{3}{n^3}\right)x^n$$

replace $x$ with $-x$ then multiply both sides by $-\frac{\ln x}{x}$ and integrate between $0$ and $1$ plus use the fact that $\int_0^1-x^{n-1}\ln x\ dx=\frac1{n^2}$ we get

$$2\sum_{n=1}^\infty\frac{(-1)^nH_n}{n^4}+\sum_{n=1}^\infty\frac{(-1)^nH_n^{(2)}}{n^3}-3\operatorname{Li}_5(-1)=\int_0^1\frac{\ln(1+x)\operatorname{Li}_2(-x)\ln x}{x}dx$$

$$\overset{IBP}{=}\frac12\int_0^1\frac{\operatorname{Li}_2^2(-x)}{x}dx=\frac{5}{16}\zeta(2)\zeta(3)+\frac{7}{16}\sum_{n=1}^\infty\frac{H_n}{n^4}+\sum_{n=1}^\infty\frac{(-1)^nH_n}{n^4}$$

where the last result follows from this solution, check Eq$(3)$.

rearrange to get

$$\sum_{n=1}^\infty\frac{(-1)^nH_n^{(2)}}{n^3}=\frac{5}{16}\zeta(2)\zeta(3)-\frac{45}{16}\zeta(5)+\frac{7}{16}\sum_{n=1}^\infty\frac{H_n}{n^4}-\sum_{n=1}^\infty\frac{(-1)^nH_n}{n^4}$$

substitute $\sum_{n=1}^\infty\frac{(-1)^nH_n}{n^4}=\frac12\zeta(2)\zeta(3)-\frac{59}{32}\zeta(5)$ and $\sum_{n=1}^\infty\frac{H_n}{n^4}=3\zeta(5)-\zeta(2)\zeta(3)$, we get

$$\sum_{n=1}^\infty\frac{(-1)^{n}H_n^{(2)}}{n^3}=\frac{11}{32}\zeta(5)-\frac58\zeta(2)\zeta(3)$$


Bonus:

Again, by Cauchy product we have

$$\operatorname{Li}_2(x)\operatorname{Li}_3(x)=\sum_{n=1}^\infty\left(\frac{6H_n}{n^4}+\frac{3H_n^{(2)}}{n^3}+\frac{H_n^{(3)}}{n^2}-\frac{10}{n^5}\right)x^n$$

set $x=-1$ and substitute the result of $\sum_{n=1}^\infty\frac{(-1)^{n}H_n^{(2)}}{n^3}$ and $\sum_{n=1}^\infty\frac{(-1)^{n}H_n}{n^4}$ we get

$$\sum_{n=1}^\infty\frac{(-1)^nH_n^{(3)}}{n^2}=\frac{21}{32}\zeta(5)-\frac34\zeta(2)\zeta(3)$$

Or it can be found here.

$\endgroup$
1
$\begingroup$

Lets calculate the second sum and using the identity $\quad \displaystyle \frac{\ln^2(1-x)}{1-x}=\sum_{n=1}^\infty x^n\left(H_n^2-H_n^{(2)}\right)$

Replace $x$ with $-x$, then multiply both sides by $\ln^2x$ and integrate, we get \begin{align} I&=\int_0^1\frac{\ln^2x\ln^2(1+x)}{1+x}\ dx=\sum_{n=1}^\infty (-1)^n\left(H_n^2-H_n^{(2)}\right)\int_0^1x^n\ln^2x\ dx\\ &=2\sum_{n=1}^\infty (-1)^n\frac{H_n^2-H_n^{(2)}}{(n+1)^3}=-2\sum_{n=1}^\infty (-1)^n\frac{H_{n-1}^2-H_{n-1}^{(2)}}{n^3}\\ &=-2\sum_{n=1}^\infty (-1)^n\left(\frac{H_n^2}{n^3}-\frac{H_n^{(2)}}{n^3}-2\frac{H_n}{n^4}+\frac{2}{n^5}\right)\\ &=2\sum_{n=1}^\infty\frac{(-1)^{n-1}H_n^2}{n^3}-2\sum_{n=1}^\infty\frac{(-1)^{n-1}H_n^{(2)}}{n^3}+4\sum_{n=1}^\infty\frac{(-1)^nH_n}{n^4}+\frac{15}4\zeta(5) \end{align} we have already proved $$\sum_{n=1}^\infty\frac{(-1)^{n-1}H_n^{(2)}}{n^3}=\frac32\zeta(5)+\frac18\zeta(2)\zeta(3)+\sum_{n=1}^\infty\frac{(-1)^nH_n}{n^4}$$

Thus $$I=\frac34\zeta(5)-\frac14\zeta(2)\zeta(3)+2\sum_{n=1}^\infty\frac{(-1)^nH_n}{n^4}+2\sum_{n=1}^\infty\frac{(-1)^{n-1}H_n^2}{n^3}\tag{1}$$

applying IBP for the integral, we get $\quad \displaystyle I=-\frac23\int_0^1\frac{\ln^3(1+x)\ln x}{x}\ dx$

I managed here to prove \begin{align} \int_0^1\frac{\ln^3(1+x)\ln x}{x}\ dx&=-12\operatorname{Li}_5\left(\frac12\right)-12\ln2\operatorname{Li}_4\left(\frac12\right)+\frac{99}{16}\zeta(5)+3\zeta(2)\zeta(3)\\ &\quad-\frac{21}4\ln^22\zeta(3)+2\ln^32\zeta(2)-\frac25\ln^52 \end{align} giving us $$I=8\operatorname{Li}_5\left(\frac12\right)+8\ln2\operatorname{Li}_4\left(\frac12\right)-\frac{33}{8}\zeta(5)-2\zeta(2)\zeta(3)+\frac72\ln^22\zeta(3)-\frac43\ln^32\zeta(2)+\frac4{15}\ln^52$$ Plugging the value of $I$ in $(1)$ along with the value of $\sum_{n=1}^\infty\frac{(-1)^nH_n}{n^4}$, we get

\begin{align} \sum_{n=1}^\infty\frac{(-1)^{n-1}H_n^2}{n^3}&=4\operatorname{Li}_5\left(\frac12\right)+4\ln2\operatorname{Li}_4\left(\frac12\right)-\frac{19}{32}\zeta(5)-\frac{11}8\zeta(2)\zeta(3)\\ &\quad+\frac74\ln^22\zeta(3)-\frac23\ln^32\zeta(2)+\frac2{15}\ln^52 \end{align}

$\endgroup$

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .