0
$\begingroup$

I'm trying to find the value of: $$\sum_{k=0}^{\left \lfloor \frac{p}{2} \right \rfloor} \binom{p}{k}$$ For even and odd $p$, the indication I was given suggests writing it as $$\frac{1}{2}\left (\sum_{k=0}^{\left \lfloor \frac{p}{2} \right \rfloor} \binom{p}{k} + \sum_{k=0}^{\left \lfloor \frac{p}{2} \right \rfloor} \binom{p}{p-k} \right )$$ But I nothing I did got me anywhere.

$\endgroup$
2
  • 2
    $\begingroup$ Recall that $\sum_{k=0}^p\binom{p}{k}=(1+1)^k$. $\endgroup$
    – Robert Z
    Commented Nov 17, 2018 at 15:57
  • $\begingroup$ Look at Pascal's triangle. The p-th row consists of the values $p \choose k$. Maybe you can notice a pattern when you sum 1/2 the values in a row. $\endgroup$ Commented Nov 17, 2018 at 16:02

2 Answers 2

1
$\begingroup$

That's an excellent suggestion! Ceiling and floor functions are awkward, so my first step is always to remove them somehow:

Even $p$

For even $p$, we can define $p=2m$. Then the suggestion given to you become:

$$ \begin{aligned} \frac{1}{2}\left( \sum_{k=0}^{m}\binom{2m}{k} + \sum_{k=0}^{m}\binom{2m}{2m-k} \right) &= \frac{1}{2}\left( \sum_{k=0}^{m}\binom{2m}{k} + \sum_{k=m}^{2m}\binom{2m}{k} \right) \\\\ &= \frac{1}{2}\left( \binom{2m}{m}+\sum_{k=0}^{2m}\binom{2m}{k} \right) \\\\ &= \frac{1}{2}\left( \binom{p}{\frac{p}{2}}+2^{p} \right) \end{aligned} $$

Odd $p$

We define $p=2m+1$. Then the suggestion becomes:

$$ \begin{aligned} \frac{1}{2}\left( \sum_{k=0}^{m}\binom{2m+1}{k} + \sum_{k=0}^{m}\binom{2m+1}{2m+1-k} \right) &= \frac{1}{2}\left( \sum_{k=0}^{m}\binom{2m+1}{k} + \sum_{k=m+1}^{2m+1}\binom{2m+1}{k} \right) \\\\ &= \frac{1}{2}\left( \sum_{k=0}^{2m+1}\binom{2m+1}{k} \right) \\\\ &= \frac{1}{2}\cdot 2^{p} \end{aligned} $$

Key Points

  • Always try to use the suggestion given to you by lecturer / book
  • If an integer is odd or even, translate it to the equation using $p=2m$ or $p=2m+1$
  • When there is a summation, try to change the index of summation
  • Be familiar with binomial coefficients and their various well-known properties
$\endgroup$
2
  • $\begingroup$ This question was back in my high school years! I had completely forgotten it ever exited. How on Earth did you find it? Anyhow, really nice write-up :) $\endgroup$ Commented Dec 9, 2023 at 10:27
  • 1
    $\begingroup$ @fuzzypixelz yesterday, someone answered the question so it appeared in my recommendation :D $\endgroup$
    – acat3
    Commented Dec 9, 2023 at 12:33
1
$\begingroup$

You can write $$ \eqalign{ & 2^{\,p} = \sum\limits_{0\, \le \,k\, \le \,p} {\left( \matrix{ p \cr k \cr} \right)} = \cr & = \sum\limits_{0\, \le \,k\, \le \,\left\lfloor {{p \over 2}} \right\rfloor } {\left( \matrix{ p \cr k \cr} \right)} + \sum\limits_{\left\lfloor {{p \over 2}} \right\rfloor + 1\, \le \,k\, \le \,p} {\left( \matrix{ p \cr k \cr} \right)} = \cr & = \sum\limits_{0\, \le \,k\, \le \,\left\lfloor {{p \over 2}} \right\rfloor } {\left( \matrix{ p \cr k \cr} \right)} + \sum\limits_{\left\lfloor {{p \over 2}} \right\rfloor + 1\, \le \,k\, \le \,p} {\left( \matrix{ p \cr p - k \cr} \right)} = \cr & = \sum\limits_{0\, \le \,k\, \le \,\left\lfloor {{p \over 2}} \right\rfloor } {\left( \matrix{ p \cr k \cr} \right)} + \sum\limits_{0\, \le \,k\, \le \,p - \left\lfloor {{p \over 2}} \right\rfloor - 1} {\left( \matrix{ p \cr k \cr} \right)} = \cr & = \sum\limits_{0\, \le \,k\, \le \,\left\lfloor {{p \over 2}} \right\rfloor } {\left( \matrix{ p \cr k \cr} \right)} + \sum\limits_{0\, \le \,k\, \le \,\left\lceil {{p \over 2}} \right\rceil - 1} {\left( \matrix{ p \cr k \cr} \right)} = \cr & = \sum\limits_{0\, \le \,k\, \le \,\left\lceil {{p \over 2}} \right\rceil - 1} {\left( \matrix{ p \cr k \cr} \right)} + \sum\limits_{\left\lceil {{p \over 2}} \right\rceil \, \le \,k\, \le \,\left\lfloor {{p \over 2}} \right\rfloor } {\left( \matrix{ p \cr k \cr} \right)} + \sum\limits_{0\, \le \,k\, \le \,\left\lceil {{p \over 2}} \right\rceil - 1} {\left( \matrix{ p \cr k \cr} \right)} = \cr & = 2\sum\limits_{0\, \le \,k\, \le \,\left\lfloor {{p \over 2}} \right\rfloor } {\left( \matrix{ p \cr k \cr} \right)} + \left( {\left\lceil {{p \over 2}} \right\rceil - \left\lfloor {{p \over 2}} \right\rfloor - 1} \right)\left( \matrix{ p \cr \left\lfloor {{p \over 2}} \right\rfloor \cr} \right) = \cr & = 2\sum\limits_{0\, \le \,k\, \le \,\left\lfloor {{p \over 2}} \right\rfloor } {\left( \matrix{ p \cr k \cr} \right)} - \left( {1 - p\bmod 2} \right)\left( \matrix{ p \cr \left\lfloor {{p \over 2}} \right\rfloor \cr} \right) \cr} $$

$\endgroup$

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .