1
$\begingroup$

Question: Find the locus of a point $P$ if the tangents drawn from $P$ to circle $x^2 + y^2 = a^2$ so that the tangents are perpendicular to each other.

I tried solving this and then I got to this condition here, after I applied the formulua for finding the angle between the tangents

Formula is Angle btw tangents: $$\cos\theta = \frac{1 - \tan^2(\theta/2)}{ 1 + \tan^2(\theta/2)} $$

So, I got to this equation of locus after solving using that formula... $$a^2 * \cos^2(\theta/2) = x_1^2 + y_1^2$$

But I am having trouble trying to figure out how to show that the tangents are perpendicular :C

so, I tried applying the trigonometric here, and then I got this answer $$x_1^2 + y_1^2 - a^2 * \cos^2 (\theta/2)$$

But in my solutions book it's different, it's $x_1^2 + y_1^2 - 2a^2$

$\endgroup$
9
  • $\begingroup$ Try to draw a diagram. It really helps. $\endgroup$
    – Kenny Lau
    Commented Jun 27, 2016 at 14:38
  • $\begingroup$ I did use the diagram here and then I got this answer, $\endgroup$ Commented Jun 27, 2016 at 14:38
  • $\begingroup$ "x1^2 + y1^2 - a^2 * cos^2 (theta)/2 " $\endgroup$ Commented Jun 27, 2016 at 14:39
  • $\begingroup$ See math.stackexchange.com/questions/33520/… $\endgroup$ Commented Jun 27, 2016 at 14:41
  • $\begingroup$ It's on ellipse =3 (ahh nvm, I didn't read everything lol!) $\endgroup$ Commented Jun 27, 2016 at 14:42

3 Answers 3

1
$\begingroup$

HINT.

Tangent lines are perpendicular and equal between them. They are also perpendicular to the radii passing throuh tangency points. So tangent lines and radii form a square.

$\endgroup$
1
$\begingroup$

Hint: find the hidden square in the picture below.

enter image description here

$\endgroup$
0
$\begingroup$

$\newcommand{\angles}[1]{\left\langle\,{#1}\,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{\mathrm{i}} \newcommand{\iff}{\Leftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\Li}[2]{\,\mathrm{Li}_{#1}\left(\,{#2}\,\right)} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ Lets $\ds{\vec{p}}$ the position of point $P$. For a given $\ds{\hat{n}}$, it intersects the circle if $\ds{\verts{\vec{p} + \mu\hat{n}}^{2} = a^{2}}$ for some value of $\ds{\mu \in \mathbb{R}}$: \begin{align} \mu^{2} + 2\vec{p}\cdot\hat{n}\,\mu + p^{2} = a^{2} & \imp\ \left\lbrace\begin{array}{rcl} \ds{\mu} & \ds{=} & \ds{-\vec{p}\cdot\hat{n}} \\[1mm] \ds{\pars{\vec{p}\cdot\hat{n}}^{2} + a^{2}} & \ds{=} & \ds{p^{2}} \end{array}\right.\tag{1} \end{align} There are $\ds{\ul{two}}$ solutions $\ds{\hat{n}_{\pm}}$ for $\ds{\hat{n}}$. So, the intersection ocurrs at two points: $\ds{\vec{p} - \vec{p}\cdot\hat{n}_{-}\,\hat{n}_{-}}$ and $\ds{\vec{p} - \vec{p}\cdot\hat{n}_{+}\,\hat{n}_{+}}$. Then, the locus definition yields $$ 0 = \bracks{\vec{p} - \pars{\vec{p} - \vec{p}\cdot\hat{n}_{-}\,\hat{n}_{-}}}\cdot \bracks{\vec{p} - \pars{\vec{p} - \vec{p}\cdot\hat{n}_{+}\,\hat{n}_{+}}} = \pars{\vec{p}\cdot\hat{n}_{-}}\pars{\vec{p}\cdot\hat{n}_{+}} \hat{n}_{-}\cdot\hat{n}_{+} $$ However, as we can see from expressions $\pars{1}$, $\ds{\vec{p}\cdot\hat{n}_{\pm} \not= 0}$ because $\ds{a^{2} \not= p^{2}}$ which leads to $\ds{\hat{n}_{-}\cdot\hat{n}_{+} = 0}$


Therefore, $\ds{\vec{p}}$ belong to the OP mentioned locus if there exists a pair of unit vectors $\ds{\hat{n}_{\pm}}$ such that: \begin{equation} \left\lbrace\begin{array}{rcl} \ds{\pars{\vec{p}\cdot\hat{n}_{-}}^{2} + a^{2}} & \ds{=} & \ds{p^{2}} \\ \ds{\pars{\vec{p}\cdot\hat{n}_{+}}^{2} + a^{2}} & \ds{=} & \ds{p^{2}} \\ \ds{\hat{n}_{-}\cdot\hat{n}_{+}} & \ds{=} & \ds{0} \end{array}\right.\tag{2} \end{equation} In writing $\ds{\vec{p}}$ as a linear combination of $\ds{\braces{\hat{n}_{\pm}}}$; namely, $\ds{\vec{p} = c_{-}\hat{n}_{-} + c_{+}\hat{n}_{+}}$; we find $\ds{c_{\pm}^{2} = a^{2}}$ $\ds{\pars{~\mbox{see conditions}\ \pars{2}~}}$ such that $$ \color{#f00}{p} = \verts{\vec{p}} = \color{#f00}{\root{2}a} $$

The locus is the set of points that rest in the circle $\color{#f00}{\ds{x^{2} + y^{2} = 2a^{2}}}$.

$\endgroup$

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .