2
$\begingroup$

I'm stuck on this definite integral problem. I need some constructive hint to proceed further.

$$\int_0^a (a^2 + x^2)^\frac{5}{2} dx$$

Substituting $$x = a \cot\theta,$$ I have converted this integral to $$\int_0^a (a \csc\theta)^5 dx.$$

Now I'm unable to proceed further. Kindly help

$\endgroup$
4
  • $\begingroup$ Use calc101.com/deriving_reduction_5.html $\endgroup$ Commented Mar 16, 2016 at 8:27
  • $\begingroup$ Additionally, you forgot to substitute in a new differential. You should be able to calculate that $\mathrm{d}x=-a\csc^2\theta\,\mathrm{d}\theta$, which changes your overall integral a bit. $\endgroup$ Commented Mar 16, 2016 at 8:32
  • $\begingroup$ @labbhattacharjee can I apply that to definite integral problem also. Because they have illustrated it using indefinite integral. $\endgroup$
    – Heisenberg
    Commented Mar 16, 2016 at 8:33
  • $\begingroup$ @user109256 You can. But you need to take care of the limits. In fact, with the change $x=a \cot\theta$, the limits change from $(0,a)$ to $(\frac{\pi}{4},\frac{\pi}{2})$. $\endgroup$
    – AugSB
    Commented Mar 16, 2016 at 8:45

3 Answers 3

1
$\begingroup$

Hint:

Substitute $x=a\sinh(t)$.

$$a^6\int\cosh^6(t)\,dt=\frac{a^6}{32}\int(\cosh(6t)+6\cosh(4t)+15\cosh(2t)+40)\,dt.$$

$\endgroup$
1
$\begingroup$

Utilize the reduction formula $$\int_0^a \frac{x^n}{\sqrt{a^2+x^2}}dx=I_n=\frac{\sqrt2 a^6} n -\frac{(n-1)a^2}nI_{n-2} $$ to reduce the integral \begin{align} \int_0^a (a^2 + x^2)^\frac{5}{2} dx = &\int_0^a \frac{(a^2 + x^2)^3}{\sqrt{a^2+x^2}}dx\\ = &\int_0^a \frac{x^6+3a^2x^4+3a^4x^2+a^6}{\sqrt{a^2+x^2}}dx\\ =& \ \frac{67\sqrt2}{48}a^6+\frac5{16}a^6 I_0 \end{align} where $ I_0=\int_0^a\frac1{\sqrt{a^2+x^2}}dx=\sinh^{-1}1 $.

$\endgroup$
0
$\begingroup$

In $\theta$ the integral is $$a^6 \int_\frac\pi4^\frac\pi2 \csc^7 \theta \,d\theta.$$ Now apply the reduction formula $$\int \csc^m \theta \,d\theta = - \frac{1}{m - 1} \csc^{m - 2} \cot \theta + \frac{m - 2}{m - 1} \int \csc^{m - 2} \theta \,d\theta ,$$ which specializes for our limits to $$\int_\frac\pi4^\frac\pi2 \csc^m \theta \,d\theta = 2^{\frac{m}2 - 1} + \frac{m - 2}{m - 1} \int_\frac\pi4^\frac\pi2 \csc^{m - 2} \theta \,d\theta ,$$ three times to express the integral in terms of $$\int_\frac\pi4^\frac\pi2 \csc \theta \,d\theta = -\log |\csc \theta + \cot \theta| \Big\vert_\frac\pi4^\frac\pi2 = \operatorname{arsinh} 1 = \log(1 + \sqrt 2).$$

Performing these computations yields $$\boxed{a^6 \left(\frac{67 \sqrt 2}{48} + \frac{5}{16} \operatorname{arsinh} 1\right)}.$$

$\endgroup$

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .