1
$\begingroup$

How to prove that $\sqrt{2011} + \sqrt{2013} + \sqrt{2015} + \sqrt{2017} < 4\sqrt{2014}$ without using calculator?

$\endgroup$

2 Answers 2

6
$\begingroup$

The function $f(x)=\sqrt{x}$ is strictly concave for $x>0$ so by Jensen's inequality, we have $$ \frac{1}{4}f(2011)+\frac{1}{4}f(2013)+\frac{1}{4}f(2015)+\frac{1}{4}f(2017)<f\left(\frac{1}{4}(2011+2013+2015+2017)\right) $$ which is $\sqrt{2014}$.

$\endgroup$
1
$\begingroup$

Hint:

$$\sqrt{k-r}+\sqrt{k+r}<2\sqrt{k},\ \ \ \forall k\ge 0, k\ge |r|, r\neq 0$$

Since:

$$\iff 2k+2\sqrt{k^2-r^2}<4k\iff 2\sqrt{k^2-r^2}<2k\iff k^2-r^2<k^2\iff -r^2<0$$

$\endgroup$

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .