SlideShare a Scribd company logo
D. Todd Griffith, Ph.D.
Wind and Water Power Technologies
Sandia National Laboratories
Fifth Sandia Wind Plant Reliability Workshop
August 13, 2013
dgriffi@sandia.gov
Sandia Technical Report: SAND2013-6915C
 Continued increase 
in installed wind 
capacity both world 
wide and in the U.S.
 China – largest 
cumulative capacity
 U.S. second in 
cumulative
~285 GW Installed Worldwide - Total (up from 240 GW)
~60 GW Installed in U.S. – Total (up from 47 GW)
0
50,000
100,000
150,000
200,000
250,000
300,000
350,000
0
9,000
18,000
27,000
36,000
45,000
54,000
1983 1990 1995 2000 2006 2012
CumulativeMW
MWperyear
Year
Installed Wind Powerin the World
- Annual and Cumulative -
Source: BTM Consult - A Part of Navigant - March 2013
Source: BTM Consult – A Part
of Navigant – March 2013
Turbine Prices
Source: DOE Wind Technologies Market Report
Project Prices
2012: $950-$1300/kW
2009: $1500/kW
2000-2002: $700/kW
2012: $1940/kW
2009&2010: ~$2200/kW
2004: ~$1250/kW
 U.S. ‐ DOE has proposed the 20% by 2030 scenario
• 2013 State of the Union:  double renewables by 2020
• U.S. DOE recently announced new Vision for wind (2020, 2030, 2050)
 Europe – EU has proposed a 20% renewables by 2020 plan
 Record installations of nearly 45 GW in 2012
 Economic value of global market from $76B (2012) to $113B 
(2017)
• US Wind Energy:  $25B
• US Aerospace:  $218B   (Civil Aircraft $61B) **
 UK – significant offshore wind installations continue
• World leader in offshore wind with 2.8 GW installed end of 
2012 (56% total world offshore capacity) 
** 2012 Year-end Review and Forecast, Aerospace Industries Association
0
2
4
6
8
10
12
14
16
18
Annual GW Installed
*Installations
2007: 5,253 MW
*Installations
2008: 8,362 MW
DOE 20% by 2030 Scenario:  Installed 
Capacity – Predicted and Actual
Capacity additions in 20% Scenario
Source*: AWEA, 2012
*Installations
2009: 10,005
MW
*Installations
2010: 5,216 MW
2011: 6,820 MW
2012: 13,131 MW
 Size
 1.5-5.0+ MW
 Towers: 65-100+ meters
 Blades: 34-80+ meters
 Weight: 150-500+ tons
 Costs (traditional)
• System ~ $3/lb
• Blades ~ $6/lb
Wind Industry Trends &
Challenges
•High-end Military ~ $1000/lb
•Aerospace Industry ~ $100/lb
 Growth of average individual turbine capacity: 1.67 to 1.84 MW 
 Mainstream of installed turbines, 1.5‐2.5 MW (83%) with ~13% 2.5 
MW and above in 2012
• US average rating is 1.93 MW  (down from 1.97 MW)
• However, growth in hub height and rotor diameter (low wind speed siting)
Source*: AWEA, 2012
Current Turbine Technology
And, expanded product offerings
Continued
rotor growth
for offshore
(5 MW and
above)
Additional
offerings for
land-based
machines 2-3
MW: hub
height and
rotor size
options
Continued significant 
installations in the UK in 
recent years
Many offshore projects in 
pipeline for 2013/2014 (~4.8 
GW) particularly in Germany 
(~2.5 GW), UK (~1.5 GW)
2.5% of 2012 installations 
were offshore (slight drop)
Forecasting range from 6‐18% 
annually offshore for next five 
years (2013‐2017)
 Until recent years, two prime suppliers of offshore 
turbines (Siemens, Vestas) – new entrants emerging
 Offshore is test bed for large turbine technology
• Virtually all are fixed bottom (monopile, etc)
 New large machines in development for offshore
• 6 MW Alstom (150‐meter diameter)
• 6 MW Siemens (120‐meter diameter)
• 7 MW Vestas (164‐meter diameter)
• 7 MW Mitsubishi (165‐meter diameter)
• 4.5 MW Gamesa (134‐meter diameter)
Land-based Project Shallow Water Offshore Project
Musial, W. and
Ram, B. Large-
Scale Offshore
Wind Power in
the United
States.
NREL/TP-500-
40745. 2010.
Direct drive concept continues in its application
• Direct drive account for 19.5% of world’s supply 
of wind power capacity in 2012 (up from 14% in 
2009)
• Simpler mechanism with no gear box 
maintenance
Todd Griffith: 2013 Sandia National Laboratoies Wind Plant Reliability Workshop
Solving issues, improving codes and standards, and
developing innovations all lead to lower COE:
• lower capital costs,
• lower O&M, or
• increased energy capture.
 Radar
 Noise
 Transportation
 Wind Plant Performance; Wake Losses
 Field Service & Repair
 Lightning
 Reliability of blade design & manufacturing
Acoustic
Research
Effects of
Turbines on
Radar
 Innovations in research communities – labs, universities, 
industry
• Passive load control
• New airfoils
• Large blade development
• Active load and performance control
• Vertical Axis Wind Turbine (VAWT designs)
• New materials characterizations
• Sensor development for SHM and active load control
• Increased tip speeds
• Coatings for radar, lightning
 Labs – addressing various aspects and elements of wind 
system reliability through R&D
• Components Reliability
 Gearbox Reliability Collaborative (GRC)
 Blade Reliability Collaborative (BRC)
• Condition monitoring; Structural Health and Prognostics 
Management
• Wind Energy Systems Analysis and Engineering
• Wind Farm Performance and Testing
 Problem:  Blade reliability 
issues related to 
manufacturing, 
transportation, installation, 
and operation can have 
large effects on COE as 
blade failures can cause 
extensive down time and 
lead to expensive repairs.
 Goal:  Improve the reliability 
of blades delivered to the 
field so that remediation 
work before operation can 
be eliminated and the 
service lifetimes can achieve 
the 20 year targets that are 
expected by wind plant 
operators and financiers.
Manufacturing Operation
TestingDesign
 Two blades built based on 
BSDS blade design
• Glass and carbon spar 
versions
• Defects manufactured:  Out‐
of‐plane and in‐plane waves, 
porosity, delaminations, and 
disbonds
Sandia has focused on a sealed water box that:
• Adjusts to slight curvature surfaces
• Eliminates water flow to open box
• Maximizes signal strength
• Accommodates necessary standoffs for signal
clarity
• Easily saves scanned images for reference using the
unidirectional Mouse Encoder
4 Ply Pillow Inserts
FBH
FHB’s Pillow Inserts
BRC: Probe Housing Development for Factory Deployment
CREW: Continuous Reliability Enhancement for Wind
21
Goal: Create a national reliability database of wind plant operating
data to enable reliability analysis
Sandia  partners with 
Strategic Power Systems 
(SPS), whose ORAPWind® 
software collects real‐
time data from wind plant 
partners
Benchmark reliability performance
Track operating performance
Method:
SHPM: Structural Health and Prognostics 
Management
Cost-effectively simulating realistic
damaged states and evaluating their effects
Repair Cost
Defect Size
Blade Removal
Blade Replacement
Up‐Tower Repair
Ground Repair
No Repair
(not to scale)
Recognizing the dependence of repair costs
on extent of damage and ease of accessibility:
Opportunity to plan for cheaper repairs,
optimize O&M processes
SHPM: Structural Health and Prognostics 
Management (cont’d)
Smart loads management has potential to reduce cost of energy
in two ways: reduce O&M costs and increase energy capture
Shutdown
Online Reports
Annual Global Wind Power Development
0
25,000
50,000
75,000
100,000
125,000
1990 2012 2017 2022
MW
Annual Global Wind PowerDevelopment
Offshore (Prediction) Prediction Offshore (Forecast)
Forecast Existing capacity
Source: BTM Consult - A Part
of Navigant - March 2013
Todd Griffith: 2013 Sandia National Laboratoies Wind Plant Reliability Workshop

More Related Content

Todd Griffith: 2013 Sandia National Laboratoies Wind Plant Reliability Workshop