SlideShare a Scribd company logo
Energy Efficient Transport in 2020: Key Policy, Technology & Research Drivers   Paul Wuebben, Clean Fuels Officer South Coast Air Quality Management District Southern California Smart Grid  Research Symposium Davidson Conference Center  UNIVERSITY  of SOUTHERN  CALIFORNIA October 6, 2009 +
Outline Why an interest in a Smart Grid?  The need for Electric Drive (ED) Transport  Air Quality, Energy + Climate Change  CA policies + Vehicle ED Market trends Smart Grid Deployment and Optimization:  Maximizing Renewable Generation Use Maximizing the deployment of plug in EVs  AQMD Smart Grid support policies
1 st :  Why are we interested in a Smart Grid? Reduce carbon emissions of transport sector Maximize use of off-peak renewable generation Minimize the need for large transmission capacity through system demand disaggregation  Enhance the business case for renewable resources with capacity factors < fossil generation Achieve sustainable zero emission mobility Portal to large consumer + system efficiencies
Convergence of  Air Quality,  Climate & Energy Security South Coast Air Basin: 25% of U.S. ozone exposure 50% of U.S. PM-10 exposure > 85% of airborne cancer risk from petroleum fuel use (diesel + gasoline) Transportation sources:  > 40% of CA GHG Energy security: CA Transportation: > 95% reliance on petroleum  72% of U.S. oil supply is imported
Energy efficient transport in 2020, Paul Wuebben, Clean fuels officer, AQMD
Energy efficient transport in 2020, Paul Wuebben, Clean fuels officer, AQMD
Airborne Cancer Risk  Including Diesel :  Ubiquitous + Petroleum Use Driven South Coast Air Basin
U.S. Oil Market Dynamics
The Energy Challenge:
source:  IPCC Greenhouse Gas Emissions: Unprecedented Growth Rates = Unprecedented Problems
Source:  James Hansen, 2008 Fossil Fuel Use: Largest Atmospheric Experiment in History
GHG BAU Impacts Extreme weather intensification Ocean effects Acidification  fisheries extinction Salinity effects  current disruptions Sea level rise  Mega-Drought Levels Insect renaissance Fresh water supply shortages Severe economic losses
Warmer Days Lead To Both Higher Emissions + More Ozone Source: Air Resources Board, 2000 Ozone (ppm) Temperature ( o F) Los Angeles Ozone Levels (1995-1998 ) California Ozone Standard Source:  California Environmental Protection Agency
ENSO – El Nino Southern Oscillation (3 – 8 yr. cycle) Climate Implications of High Carbon Fuel Use:
Teleconnections and Feedbacks Bistability of Saharan Vegetation Tibetan Albedo  Change? ENSO Triggering Indian Monsoon Transformation Bodele Dust Supply Change? Bistability / Collapse of Amazonian Forest? Reduced Performance of Marine Carbon Pump
Teleconnections and Feedbacks Atlantic Deep Water Formation Instability   of   West   Antarctic Ice Sheet? Southern Ocean Upwelling   / Circumpolar   Deep   Water   Formation Instability of Methane Clathrates Instability of Greenland Ice Sheet? ENSO Triggering Bodele Dust Supply Change? Bistability of Saharan Vegetation Bistability / Collapse of Amazonian Forest? Reduced Performance of Marine Carbon Pump Tibetan Albedo  Change? Indian Monsoon Transformation
Runaway Greenhouse Dynamics? Bistability of Saharan Vegetation Indian Monsoon Transformation Bistability / Collapse of Amazonian Forest? Bistability of Saharan Vegetation Bodele Dust Supply Change? Tibetan Albedo  Change? Atlantic Deep Water Formation Reduced Performance of Marine Carbon Pump Tibetan Albedo  Change? Reduced Performance of Marine Carbon Pump Bodele Dust Supply Change? Atlantic Deep Water Formation ENSO Triggering Southern Ocean Upwelling   / Circumpolar   Deep   Water   Formation Instability   of   West   Antarctic Ice Sheet? Instability of Greenland Ice Sheet? ENSO Triggering Instability of Greenland Ice Sheet? Instability   of   West   Antarctic Ice Sheet? Southern Ocean Upwelling   / Circumpolar   Deep   Water   Formation Anthropogenic Greenhouse Gas Emissions
GHG Emissions: Transportation Sources Dominate in CA
Current Policy Initiatives Intersecting EVs and Electricity Use CAFE and California AB1493 vehicle standards ZEV mandate (2,500 fuel cell vehs. in 2009-11) Tax credits and HOV lane access for hybrids California Global Warming Act (AB 32) AB 118 Program Funding ($1.5 B over 7 years) Stimulus funding via DOE SCAQMD: Clean Fuels Program, Fleet Rules, Carl Moyer Incentive Program, Prop 1B, etc.
California’s RPS:  Most Aggressive in the Country Source:  Black and Veatch
GHG Emissions (MMTCO2eq) AB32 Transportation Sector  Carbon Reduction Strategies Plug-in Hybrids + Battery Electric Vehicles contribute to these “wedges”
Low Carbon Fuel Standard Carbon intensity performance standard gCO2e / MJ 10% reduction in gasoline CI:  95.61 *  to   86.27 * 10% reduction in diesel CI:  94.47 *  to  85.24 * Adoption scheduled for April, 2009  Based on Well-to-wheel GHG accounting Significant role for P-HEVs and BEVs , as well as: Biofuels, such as 2 nd  generation ethanol Natural gas, H 2  , other renewable fuels *  CARB ISOR values, March 5, 2009
WTW GHG Emissions –  gCO2e/MJ Adjustments reflect EER + iLUC assumptions Source: CARB Jan., 2009 Corn Ethanol with iLUC  adjusted from 74.3 104.3 * CA-RFG 95.6  CARBOB 96.9 ULSD 94.5 CNG from N.A. gas  adjusted from 68.0 75.6 * Corn Ethanol 74.3 G-H2 via LH2 transport, NA NG  adjusted from 142.2 61.8 * G- H2 - onsite reform., NA NG  adjusted from 98.3 42.7 * Electricity - CA mix  adjusted from 124.1 41.4 * Gaseous H2 - onsite gen. NA LFG  adjusted from 76.1 33.1 Biodiesel - Soybeans 26.9 Sugar Cane Ethanol  adjusted from 26.6 72.6 Cellulosic Ethanol - Farmed Trees 5.38
Electricity Carbon Intensity
12
 
BEVs and P-HEVs Market Outlook Significant evolution underway for both pure electric and plug-in hybrids Major hurdles: 1 st  cost; battery durability, abuse tolerance, OEM-scale manufacturing; gravimetric and volumetric energy density; recharge time; +  infrastructure deployment   “ Electric Drive” era has started Home, workplace and retail echarging infrastructure are crucial enabling steps to wide commercialization Smart Grid can help improve the economics, efficiency and low carbon intensity of recharging
AQMD Plug-in Hybrid Fleet 20 Ford Escape Conversions Quantum Technologies Advanced Lithium Power 10 Toyota Prius Conversions Hymotion A123 15
GM Volt 230
Chrysler GEM
 
35 to 45 B Gals of Cellulosic Ethanol or Renewable Methanol Breakthroughs 30%
2 x Fuel Economy Increase with Aggressive Hybrid  Drivetrains 40 – 50 mpg CAFE 35 to 45 B Gals of Cellulosic Ethanol or Biomass Methanol Breakthrouoghs 30% 30%
Diversion to Renewable Electricity  with  Plug-in Technology  Σ= 90% 2 x Fuel Economy Increase with Aggressive Hybrid  Drivetrains 40 – 50 mpg CAFE 35 to 45 B Gals of Cellulosic Ethanol or Biomass Methanol Breakthrouoghs 30% 30% 30%
Electric Drive Technology: Ready for Numerous Market Segments ON-ROAD SEGMENT LD Med Duty Heavy Duty Buses Truck Stops OFF-ROAD SEGMENT Port-related  On-dock rail (electric) Ship “cold ironing” Drayage trucks Gantry Cranes  Rail Aircraft Ground Support Equip. 8
WHY A SMART GRID ?
At its essence, a Smart Grid is the following: More consumer data for more efficient decisions on Technologies Use characteristics More enabling of the following: Energy storage Plug in hybrids Renewable power integration Smart buildings which manage load on-site More appropriate to new era of Renewable Portfolio Standards (now in 30 states)  More responsive to time-of-use pricing signals Collection of many different specific elements when linked together offer far greater system efficiency and resiliency and lower costs
How does a Smart Grid support Electric Vehicle Use: More decentralized / more distributed /  lower transmission costs More agile  voltage support  + sub-second  frequency modulation More time-responsive More accommodating of wind, solar and other renewable source  load curves and capacity factors More demand responsive / use of  tiered + off-peak tariffs   More supply responsive /  “low NOx dispatch” More linked between customer and supplier /  full net metering More systems data for real time management / “ Vehicle to Grid” use ? More systems data for emergency management Much more than just smart meters In other words, ideal for EV off-peak tarriffs
What does SG provide? Real time integrated communications  Connected components Open architecture for 2-way (customer to supplier and on-site) Sensing and measurement devices Remote monitoring Demand side management Advanced components which integrate superconductivity, and other technologies Rapid diagnosis and solutions Grid status updates and control Improved decision calculus, including operational, cost and emergency response viability Responsive to dynamic market, resource and environmental considerations Integrated network to link cost, electrons and supply/demand information
A Smart Grid Can Shift the Economics of Recharging… thereby increasing the % of miles replaced with Electricity !
P-HEV Design Alternatives
- CA Grid Plus added upstream  benefits of biofuels Charge Depleting (Plug In) Systems  -> Lower GHG Emissions than simply hybrids 19
Role of Renewable Generation
“ I’d put my money on the sun and solar energy.  What a source of power!  I hope we don’t have to wait until oil and coal run out before we tackle that.   Thomas Edison, 1931
The “Systems Management” Challenge: How best to “farm” off-peak generation
Source:  http://www.co. marin .ca.us/ depts /CD/main/ comdev /advance/Sustainability/Energy/solar/resources/ pdf / MarinPVSeminar _1104_final. pdf   A Smart Grid Will Also Help Avoid the  Need for Diesel Back-up Generation…
AQMD Smart Grid Support Policies - I  The use of  smart grid technology  that improves reliability, security, and efficiency of the electric grid  should be encouraged  and facilitated.  Cost reduction opportunities should also be maximized. Smart grid upgrades to the electrical distribution system should  make it more accommodating of wind, solar, geothermal, and other renewable energy sources where possible . Smart grid upgrades to the electrical distribution system should facilitate installation of equipment that provides more systems data that enables  improved management of electrical distribution  during emergencies where possible.
AQMD Smart Grid (SG) Support Policies - II   Be as  technology neutral  as possible, and based on open standards to maximize results from technology investments which allow for the switch out of components without replacing whole systems.  The SG network should, to the extent feasible, include planning and funding for additional transmission lines that can transport power from one region to another and  connect ‘power-demand cities’   with  potentially remote areas where  renewable power  is likely to be generated. The SG network should allow for the  transmission  of power and energy across regions and  across states  consistent with appropriate siting criteria.
AQMD Smart Grid (SG) Support Policies - III   In view of access to consumer information by the Smart Grid, the network must be kept secure and the  consumer’s privacy must be safeguarded  from unauthorized access and fraud.  Incentives  should be provided wherever feasible and cost-effective to consumers  for   in-home  devices such as  smart thermostats, smart appliances, lighting controls, in-home energy displays, and load control switches . Incentives should be provided wherever feasible and cost-effective to  businesses  for automating commercial offices and/or buildings, including smart thermostats, lighting controls, smart thermostats, energy displays, and load control switches .
AQMD Smart Grid Support Policies - IV Incentives should be provided to  consumers  for investment in intelligent electrical network equipment for enhancing monitoring, control and distribution where feasible and cost-effective. Incentives should be provided to  utility companies  for installation of grid monitoring and control devices such as transformer monitors and voltage sensors where feasible and cost-effective. Incentives should be provided to  cities  that incorporate electric vehicle integration to connection stations where feasible and cost-effective. Any grant or incentive programs should give  priority to environmental justice areas  and areas with disproportionate air quality impacts.
Conclusions The Electric Drive era has already started Smart Grid deployment offers significant benefits to help deploy PHEVs and BEVs Linking renewable generation with electric vehicles is an essential element of de-carbonizing transportation SG deployment should be designed to be as agile and robust as possible to support advances in plug-in technology
“ The Smart Grid will like you…”
THANK YOU FOR  THIS OPPORTUNITY  !

More Related Content

Energy efficient transport in 2020, Paul Wuebben, Clean fuels officer, AQMD

  • 1. Energy Efficient Transport in 2020: Key Policy, Technology & Research Drivers Paul Wuebben, Clean Fuels Officer South Coast Air Quality Management District Southern California Smart Grid Research Symposium Davidson Conference Center UNIVERSITY of SOUTHERN CALIFORNIA October 6, 2009 +
  • 2. Outline Why an interest in a Smart Grid? The need for Electric Drive (ED) Transport Air Quality, Energy + Climate Change CA policies + Vehicle ED Market trends Smart Grid Deployment and Optimization: Maximizing Renewable Generation Use Maximizing the deployment of plug in EVs AQMD Smart Grid support policies
  • 3. 1 st : Why are we interested in a Smart Grid? Reduce carbon emissions of transport sector Maximize use of off-peak renewable generation Minimize the need for large transmission capacity through system demand disaggregation Enhance the business case for renewable resources with capacity factors < fossil generation Achieve sustainable zero emission mobility Portal to large consumer + system efficiencies
  • 4. Convergence of Air Quality, Climate & Energy Security South Coast Air Basin: 25% of U.S. ozone exposure 50% of U.S. PM-10 exposure > 85% of airborne cancer risk from petroleum fuel use (diesel + gasoline) Transportation sources: > 40% of CA GHG Energy security: CA Transportation: > 95% reliance on petroleum 72% of U.S. oil supply is imported
  • 7. Airborne Cancer Risk Including Diesel : Ubiquitous + Petroleum Use Driven South Coast Air Basin
  • 8. U.S. Oil Market Dynamics
  • 10. source: IPCC Greenhouse Gas Emissions: Unprecedented Growth Rates = Unprecedented Problems
  • 11. Source: James Hansen, 2008 Fossil Fuel Use: Largest Atmospheric Experiment in History
  • 12. GHG BAU Impacts Extreme weather intensification Ocean effects Acidification fisheries extinction Salinity effects current disruptions Sea level rise Mega-Drought Levels Insect renaissance Fresh water supply shortages Severe economic losses
  • 13. Warmer Days Lead To Both Higher Emissions + More Ozone Source: Air Resources Board, 2000 Ozone (ppm) Temperature ( o F) Los Angeles Ozone Levels (1995-1998 ) California Ozone Standard Source: California Environmental Protection Agency
  • 14. ENSO – El Nino Southern Oscillation (3 – 8 yr. cycle) Climate Implications of High Carbon Fuel Use:
  • 15. Teleconnections and Feedbacks Bistability of Saharan Vegetation Tibetan Albedo Change? ENSO Triggering Indian Monsoon Transformation Bodele Dust Supply Change? Bistability / Collapse of Amazonian Forest? Reduced Performance of Marine Carbon Pump
  • 16. Teleconnections and Feedbacks Atlantic Deep Water Formation Instability of West Antarctic Ice Sheet? Southern Ocean Upwelling / Circumpolar Deep Water Formation Instability of Methane Clathrates Instability of Greenland Ice Sheet? ENSO Triggering Bodele Dust Supply Change? Bistability of Saharan Vegetation Bistability / Collapse of Amazonian Forest? Reduced Performance of Marine Carbon Pump Tibetan Albedo Change? Indian Monsoon Transformation
  • 17. Runaway Greenhouse Dynamics? Bistability of Saharan Vegetation Indian Monsoon Transformation Bistability / Collapse of Amazonian Forest? Bistability of Saharan Vegetation Bodele Dust Supply Change? Tibetan Albedo Change? Atlantic Deep Water Formation Reduced Performance of Marine Carbon Pump Tibetan Albedo Change? Reduced Performance of Marine Carbon Pump Bodele Dust Supply Change? Atlantic Deep Water Formation ENSO Triggering Southern Ocean Upwelling / Circumpolar Deep Water Formation Instability of West Antarctic Ice Sheet? Instability of Greenland Ice Sheet? ENSO Triggering Instability of Greenland Ice Sheet? Instability of West Antarctic Ice Sheet? Southern Ocean Upwelling / Circumpolar Deep Water Formation Anthropogenic Greenhouse Gas Emissions
  • 18. GHG Emissions: Transportation Sources Dominate in CA
  • 19. Current Policy Initiatives Intersecting EVs and Electricity Use CAFE and California AB1493 vehicle standards ZEV mandate (2,500 fuel cell vehs. in 2009-11) Tax credits and HOV lane access for hybrids California Global Warming Act (AB 32) AB 118 Program Funding ($1.5 B over 7 years) Stimulus funding via DOE SCAQMD: Clean Fuels Program, Fleet Rules, Carl Moyer Incentive Program, Prop 1B, etc.
  • 20. California’s RPS: Most Aggressive in the Country Source: Black and Veatch
  • 21. GHG Emissions (MMTCO2eq) AB32 Transportation Sector Carbon Reduction Strategies Plug-in Hybrids + Battery Electric Vehicles contribute to these “wedges”
  • 22. Low Carbon Fuel Standard Carbon intensity performance standard gCO2e / MJ 10% reduction in gasoline CI: 95.61 * to 86.27 * 10% reduction in diesel CI: 94.47 * to 85.24 * Adoption scheduled for April, 2009 Based on Well-to-wheel GHG accounting Significant role for P-HEVs and BEVs , as well as: Biofuels, such as 2 nd generation ethanol Natural gas, H 2 , other renewable fuels * CARB ISOR values, March 5, 2009
  • 23. WTW GHG Emissions – gCO2e/MJ Adjustments reflect EER + iLUC assumptions Source: CARB Jan., 2009 Corn Ethanol with iLUC adjusted from 74.3 104.3 * CA-RFG 95.6 CARBOB 96.9 ULSD 94.5 CNG from N.A. gas adjusted from 68.0 75.6 * Corn Ethanol 74.3 G-H2 via LH2 transport, NA NG adjusted from 142.2 61.8 * G- H2 - onsite reform., NA NG adjusted from 98.3 42.7 * Electricity - CA mix adjusted from 124.1 41.4 * Gaseous H2 - onsite gen. NA LFG adjusted from 76.1 33.1 Biodiesel - Soybeans 26.9 Sugar Cane Ethanol adjusted from 26.6 72.6 Cellulosic Ethanol - Farmed Trees 5.38
  • 25. 12
  • 26.  
  • 27. BEVs and P-HEVs Market Outlook Significant evolution underway for both pure electric and plug-in hybrids Major hurdles: 1 st cost; battery durability, abuse tolerance, OEM-scale manufacturing; gravimetric and volumetric energy density; recharge time; + infrastructure deployment “ Electric Drive” era has started Home, workplace and retail echarging infrastructure are crucial enabling steps to wide commercialization Smart Grid can help improve the economics, efficiency and low carbon intensity of recharging
  • 28. AQMD Plug-in Hybrid Fleet 20 Ford Escape Conversions Quantum Technologies Advanced Lithium Power 10 Toyota Prius Conversions Hymotion A123 15
  • 31.  
  • 32. 35 to 45 B Gals of Cellulosic Ethanol or Renewable Methanol Breakthroughs 30%
  • 33. 2 x Fuel Economy Increase with Aggressive Hybrid Drivetrains 40 – 50 mpg CAFE 35 to 45 B Gals of Cellulosic Ethanol or Biomass Methanol Breakthrouoghs 30% 30%
  • 34. Diversion to Renewable Electricity with Plug-in Technology Σ= 90% 2 x Fuel Economy Increase with Aggressive Hybrid Drivetrains 40 – 50 mpg CAFE 35 to 45 B Gals of Cellulosic Ethanol or Biomass Methanol Breakthrouoghs 30% 30% 30%
  • 35. Electric Drive Technology: Ready for Numerous Market Segments ON-ROAD SEGMENT LD Med Duty Heavy Duty Buses Truck Stops OFF-ROAD SEGMENT Port-related On-dock rail (electric) Ship “cold ironing” Drayage trucks Gantry Cranes Rail Aircraft Ground Support Equip. 8
  • 36. WHY A SMART GRID ?
  • 37. At its essence, a Smart Grid is the following: More consumer data for more efficient decisions on Technologies Use characteristics More enabling of the following: Energy storage Plug in hybrids Renewable power integration Smart buildings which manage load on-site More appropriate to new era of Renewable Portfolio Standards (now in 30 states) More responsive to time-of-use pricing signals Collection of many different specific elements when linked together offer far greater system efficiency and resiliency and lower costs
  • 38. How does a Smart Grid support Electric Vehicle Use: More decentralized / more distributed / lower transmission costs More agile voltage support + sub-second frequency modulation More time-responsive More accommodating of wind, solar and other renewable source load curves and capacity factors More demand responsive / use of tiered + off-peak tariffs More supply responsive / “low NOx dispatch” More linked between customer and supplier / full net metering More systems data for real time management / “ Vehicle to Grid” use ? More systems data for emergency management Much more than just smart meters In other words, ideal for EV off-peak tarriffs
  • 39. What does SG provide? Real time integrated communications Connected components Open architecture for 2-way (customer to supplier and on-site) Sensing and measurement devices Remote monitoring Demand side management Advanced components which integrate superconductivity, and other technologies Rapid diagnosis and solutions Grid status updates and control Improved decision calculus, including operational, cost and emergency response viability Responsive to dynamic market, resource and environmental considerations Integrated network to link cost, electrons and supply/demand information
  • 40. A Smart Grid Can Shift the Economics of Recharging… thereby increasing the % of miles replaced with Electricity !
  • 42. - CA Grid Plus added upstream benefits of biofuels Charge Depleting (Plug In) Systems -> Lower GHG Emissions than simply hybrids 19
  • 43. Role of Renewable Generation
  • 44. “ I’d put my money on the sun and solar energy. What a source of power! I hope we don’t have to wait until oil and coal run out before we tackle that. Thomas Edison, 1931
  • 45. The “Systems Management” Challenge: How best to “farm” off-peak generation
  • 46. Source: http://www.co. marin .ca.us/ depts /CD/main/ comdev /advance/Sustainability/Energy/solar/resources/ pdf / MarinPVSeminar _1104_final. pdf A Smart Grid Will Also Help Avoid the Need for Diesel Back-up Generation…
  • 47. AQMD Smart Grid Support Policies - I The use of smart grid technology that improves reliability, security, and efficiency of the electric grid should be encouraged and facilitated. Cost reduction opportunities should also be maximized. Smart grid upgrades to the electrical distribution system should make it more accommodating of wind, solar, geothermal, and other renewable energy sources where possible . Smart grid upgrades to the electrical distribution system should facilitate installation of equipment that provides more systems data that enables improved management of electrical distribution during emergencies where possible.
  • 48. AQMD Smart Grid (SG) Support Policies - II   Be as technology neutral as possible, and based on open standards to maximize results from technology investments which allow for the switch out of components without replacing whole systems. The SG network should, to the extent feasible, include planning and funding for additional transmission lines that can transport power from one region to another and connect ‘power-demand cities’ with potentially remote areas where renewable power is likely to be generated. The SG network should allow for the transmission of power and energy across regions and across states consistent with appropriate siting criteria.
  • 49. AQMD Smart Grid (SG) Support Policies - III   In view of access to consumer information by the Smart Grid, the network must be kept secure and the consumer’s privacy must be safeguarded from unauthorized access and fraud. Incentives should be provided wherever feasible and cost-effective to consumers for in-home devices such as smart thermostats, smart appliances, lighting controls, in-home energy displays, and load control switches . Incentives should be provided wherever feasible and cost-effective to businesses for automating commercial offices and/or buildings, including smart thermostats, lighting controls, smart thermostats, energy displays, and load control switches .
  • 50. AQMD Smart Grid Support Policies - IV Incentives should be provided to consumers for investment in intelligent electrical network equipment for enhancing monitoring, control and distribution where feasible and cost-effective. Incentives should be provided to utility companies for installation of grid monitoring and control devices such as transformer monitors and voltage sensors where feasible and cost-effective. Incentives should be provided to cities that incorporate electric vehicle integration to connection stations where feasible and cost-effective. Any grant or incentive programs should give priority to environmental justice areas and areas with disproportionate air quality impacts.
  • 51. Conclusions The Electric Drive era has already started Smart Grid deployment offers significant benefits to help deploy PHEVs and BEVs Linking renewable generation with electric vehicles is an essential element of de-carbonizing transportation SG deployment should be designed to be as agile and robust as possible to support advances in plug-in technology
  • 52. “ The Smart Grid will like you…”
  • 53. THANK YOU FOR THIS OPPORTUNITY !