SlideShare a Scribd company logo
Functional “Life”:
parallel cellular automata and comonads
Alexander Granin
graninas@gmail.com
C++ Russia, Saint Petersburg
Who I am?
● C++, Haskell, C#
● C++ User Group Novosibirsk, 2014
“Functional Declarative Design in C++”
● C++ Siberia Novosibirsk, 2015
“Functional Microscope: Lenses in C++”
● Talks, articles, research on FP in general, FP in C++
struct Presentation
{
Functional programming in С++
Functionally designed cellular automation
Parallel computation of cellular automation
};
4
Functional programming in C++
C++ FP Enthusiasts
● Range v3 by Eric Niebler - proposal for C++ Standard Lib
● FTL (Functional Template Library) by Bjorn Aili
● Cat by Nicola Bonelli - Category Theory elements
● Bartosz Milewski
● John Carmack
● …
● <Place your name here>
С++ User Group Novosibirsk, 2014
“Functional Declarative Design in C++”
С++ Siberia Novosibirsk, 2015
“Functional Microscope: Lenses in C++”
auto lens = personL() to addressL() to houseL();
Account account1 = {...};
Account account2 = set(lens, account1, 20);
// account2.person.address.house == 20
std::function<int(int)> modifier =
[](int old) { return old + 6; };
Account account3 = over(lens, account2, modifier);
// account3.person.address.house == 26
Lens 2 Lens 3Lens 1
FP elements in C++
● Lambdas, closures, functions (almost pure)
● std::function<>
● Immutability, POD-types
● Templates - pure functional language
● for_each(), recursion
● C++ Concepts: coming soon...
9
Simple 1-dimensional 3-state CA
● 1 dimension
● 3 states: A (“Alive”), P (“Pregnant”), D/space (“Dead”),
A A
A A
A A
P
P
A A A
1 gen P
2 gen A A A
3 gen A A A A
4 gen A P A
5 gen A A A
6 gen A A A A
7 gen A P A
template <typename T>
struct Universe {
std::vector<T> field;
int position;
};
typedef char Cell;
const Cell Pregnant = 2;
const Cell Alive = 1;
const Cell Dead = 0;
Universe<Cell>
A A A A
Universe<T>: Pointed array
Universe<Cell> u;
u.field = {D, A, A, D, A, A, D};
u.position = 3;
Immutable shift
A A A A
Universe<Cell> left (const Universe<Cell>& u) {
Universe<Cell> newU
{ u.field, u.position - 1 };
if (u.position == 0)
newU.position = u.size() - 1;
return newU;
}
Universe<Cell> right (const Universe<Cell>& u);
A A A A
A A A A
shift to right
shift to left
Observing: shift and extract
A A A A
Cell extract(const Universe<Cell>& u) {
return u.field[u.position];
}
Universe<Cell> u = {...};
Cell cur = extract (u);
Cell r = extract (right (u));
Cell rr = extract (right (right (u)));
Cell l = extract (left (u));
Cell ll = extract (left (left (u)));
D
A A A A
shift to left
shift to left
extract
Rule: observe and reduce
A A A A
P
Cell rule(const Universe<Cell>& row) {
// extract l, ll, cur, r, rr here
if (isA(l) && isA(r) && !isAorP(cur))
return Pregnant;
// ... more rules here
return Dead;
}
Applying rule: extend, extract
Cell rule (Universe<Cell> row)
Universe<Cell> extend (
std::function<Cell(Universe<Cell>)> f,
Universe<Cell> u)
A A A A
P
P
Step: duplicate, (for_each: extend, extract)
A A A A
A A A A
A A A A
A A A A
A A A A
A A A A
A A A A A
P
A
A
P
A
Cell rule (Universe<Cell> row)
Universe<Cell> extend (
std::function<Cell(Universe<Cell>)> f,
Universe<Cell> u)
Universe<Universe<Cell>>
duplicate (Universe<Cell> u)
Universe<Cell> left (Universe<Cell> u)
Universe<Cell> right (Universe<Cell> u)
16
Generic functional approach
#define UT Universe<T>
#define UUT Universe<Universe<T>>
template <typename T> T rule (const UT& u)
template <typename T> UT left (const UT& u)
template <typename T> UT right (const UT& u)
Generic extract
template <typename T> T extract(const UT& u)
{
return u.field[u.position];
}
Generic extend
template <typename T> UT extend (
const func<T(UT)>& f,
const UT& u)
{
UUT duplicated = duplicate (u);
return { map(f, duplicated.field), u.position };
}
Generic map
template<typename A, typename B, template <class ...> class Container>
Container<B> map (
const std::function<B(A)>& f,
const Container<A>& va)
{
Container<B> vb;
std::transform(va.begin(), va.end(), std::back_inserter(vb), f);
return vb;
}
Generic duplicate
const std::function<UT(UT)> leftCreator = [](const UT& u) {return left(u); };
const std::function<UT(UT)> rightCreator = [](const UT& u) {return right(u); };
template <typename T> UUT duplicate (const UT& u)
{
return makeUniverse (leftCreator, rightCreator, u);
}
Generic makeUniverse
template <typename T> UUT makeUniverse (
const std::function<UT(UT)>& leftCreator,
const std::function<UT(UT)>& rightCreator,
const UT& u) {
std::vector<UT> lefts = tailOfGen(u.position, leftCreator, u);
std::vector<UT> rights = tailOfGen(u.size() - u.position - 1, rightCreator, u);
std::vector<UT> all;
all.swap(lefts);
all.push_back(u);
all.insert(all.end(), rights.begin(), rights.end());
return { std::move(all), u.position };
}
extract + duplicate + extend = comonad
template <typename T> T extract (const UT& u)
template <typename T> UT extend (
const func<T(UT)>& f,
const UT& u)
template <typename T> UUT duplicate (const UT& u)
23
Parallel computations in FP
Container<B> map (
const std::function<B(A)>& f,
const Container<A>& va);
Container<B> mapPar (
const std::function<B(A)>& f,
const Container<A>& va);
mapPar
template <typename A, typename B, template <class ...> class Container>
Container<B> mapPar (
const std::function<B(A)>& f,
const Container<A>& va)
{
Container<std::future<B>> pars = map(par(f), va);
std::future<Container<B>> pRes = joinPars(pars);
return pRes.get();
}
template <typename A, typename B> std::function<std::future<B>(A)> par(
const std::function<B(A)>& f)
{
return [=](const A& a)
{
return std::async(std::launch::async, [=]() { return f(a); } );
};
}
par
template <typename B> std::future<std::vector<B>> joinPars(
std::vector<std::future<B>>& pars)
{
return std::async(std::launch::async, [&]() {
std::vector<B> bs;
bs.reserve(pars.size());
for (auto& it : pars)
bs.push_back(it.get());
return bs;
});
}
joinPars
27
Parallel Game of Life benchmark
● 2 dimensions
● 2 states: A (“Alive”), D/space (“Dead”),
// Pointed array of pointed arrays
typedef Universe<Cell> LifeRow;
typedef Universe<LifeRow> LifeField;
A little bit harder...
#define UT Universe<T>
#define UUT Universe<Universe<T>>
#define UUUT Universe<Universe<Universe<T>>>
#define UUUUT Universe<Universe<Universe<Universe<T>>>>
template <typename T> UUUUT duplicate2 (const UUT& u)
template <typename T> UUT extend2 (
const func<T(UUT)>& f,
const UUT& u)
template <typename T> T extract2 (const UUT& u)
extend vs extend2
template <typename T> UT extend (
const func<T(UT)>& f,
const UT& u)
{
UUT duplicated = duplicate (u);
return { map (f, duplicated.field), u.position };
}
template <typename T> UUT extend2 (
const func<T(UUT)>& f,
const UUT& uut)
{
UUUUT duplicated = duplicate2 (uut);
return fmap2 (f, duplicated);
}
fmap2
template <typename T> UUT fmap2 (
const func<T(UUT)>& f,
const UUUUT& uuut)
{
const func<UT(UUUT)> f2 = [=](const UUUT& uuut2)
{
// Something really complicated here with using of ‘f’.
};
return { map (f2, uuut.field), uuut.position }; // parallelization: map -> mapPar
}
Game of Life benchmark
Field side Sequential Parallel
(microseconds)
50 484 283
100 3900 2291
150 12669 8005
200 30278 19415
Game of Life on comonads, C++
● Highly experimental
● Sequential, async and parallel GoL
● Simple 1D 3-state CA
● Functional design
● https://github.com/graninas/CMLife
● Клеточные автоматы и комонады, by Hithroc Mehatoko
Thank you!
Alexander Granin
graninas@gmail.com
Questions?
C++ Russia, Saint Petersburg

More Related Content

Александр Гранин, Функциональная 'Жизнь': параллельные клеточные автоматы и комонады в C++

  • 1. Functional “Life”: parallel cellular automata and comonads Alexander Granin graninas@gmail.com C++ Russia, Saint Petersburg
  • 2. Who I am? ● C++, Haskell, C# ● C++ User Group Novosibirsk, 2014 “Functional Declarative Design in C++” ● C++ Siberia Novosibirsk, 2015 “Functional Microscope: Lenses in C++” ● Talks, articles, research on FP in general, FP in C++
  • 3. struct Presentation { Functional programming in С++ Functionally designed cellular automation Parallel computation of cellular automation };
  • 5. C++ FP Enthusiasts ● Range v3 by Eric Niebler - proposal for C++ Standard Lib ● FTL (Functional Template Library) by Bjorn Aili ● Cat by Nicola Bonelli - Category Theory elements ● Bartosz Milewski ● John Carmack ● … ● <Place your name here>
  • 6. С++ User Group Novosibirsk, 2014 “Functional Declarative Design in C++”
  • 7. С++ Siberia Novosibirsk, 2015 “Functional Microscope: Lenses in C++” auto lens = personL() to addressL() to houseL(); Account account1 = {...}; Account account2 = set(lens, account1, 20); // account2.person.address.house == 20 std::function<int(int)> modifier = [](int old) { return old + 6; }; Account account3 = over(lens, account2, modifier); // account3.person.address.house == 26 Lens 2 Lens 3Lens 1
  • 8. FP elements in C++ ● Lambdas, closures, functions (almost pure) ● std::function<> ● Immutability, POD-types ● Templates - pure functional language ● for_each(), recursion ● C++ Concepts: coming soon...
  • 9. 9 Simple 1-dimensional 3-state CA ● 1 dimension ● 3 states: A (“Alive”), P (“Pregnant”), D/space (“Dead”), A A A A A A P P A A A 1 gen P 2 gen A A A 3 gen A A A A 4 gen A P A 5 gen A A A 6 gen A A A A 7 gen A P A
  • 10. template <typename T> struct Universe { std::vector<T> field; int position; }; typedef char Cell; const Cell Pregnant = 2; const Cell Alive = 1; const Cell Dead = 0; Universe<Cell> A A A A Universe<T>: Pointed array Universe<Cell> u; u.field = {D, A, A, D, A, A, D}; u.position = 3;
  • 11. Immutable shift A A A A Universe<Cell> left (const Universe<Cell>& u) { Universe<Cell> newU { u.field, u.position - 1 }; if (u.position == 0) newU.position = u.size() - 1; return newU; } Universe<Cell> right (const Universe<Cell>& u); A A A A A A A A shift to right shift to left
  • 12. Observing: shift and extract A A A A Cell extract(const Universe<Cell>& u) { return u.field[u.position]; } Universe<Cell> u = {...}; Cell cur = extract (u); Cell r = extract (right (u)); Cell rr = extract (right (right (u))); Cell l = extract (left (u)); Cell ll = extract (left (left (u))); D A A A A shift to left shift to left extract
  • 13. Rule: observe and reduce A A A A P Cell rule(const Universe<Cell>& row) { // extract l, ll, cur, r, rr here if (isA(l) && isA(r) && !isAorP(cur)) return Pregnant; // ... more rules here return Dead; }
  • 14. Applying rule: extend, extract Cell rule (Universe<Cell> row) Universe<Cell> extend ( std::function<Cell(Universe<Cell>)> f, Universe<Cell> u) A A A A P P
  • 15. Step: duplicate, (for_each: extend, extract) A A A A A A A A A A A A A A A A A A A A A A A A A A A A A P A A P A Cell rule (Universe<Cell> row) Universe<Cell> extend ( std::function<Cell(Universe<Cell>)> f, Universe<Cell> u) Universe<Universe<Cell>> duplicate (Universe<Cell> u) Universe<Cell> left (Universe<Cell> u) Universe<Cell> right (Universe<Cell> u)
  • 16. 16 Generic functional approach #define UT Universe<T> #define UUT Universe<Universe<T>> template <typename T> T rule (const UT& u) template <typename T> UT left (const UT& u) template <typename T> UT right (const UT& u)
  • 17. Generic extract template <typename T> T extract(const UT& u) { return u.field[u.position]; }
  • 18. Generic extend template <typename T> UT extend ( const func<T(UT)>& f, const UT& u) { UUT duplicated = duplicate (u); return { map(f, duplicated.field), u.position }; }
  • 19. Generic map template<typename A, typename B, template <class ...> class Container> Container<B> map ( const std::function<B(A)>& f, const Container<A>& va) { Container<B> vb; std::transform(va.begin(), va.end(), std::back_inserter(vb), f); return vb; }
  • 20. Generic duplicate const std::function<UT(UT)> leftCreator = [](const UT& u) {return left(u); }; const std::function<UT(UT)> rightCreator = [](const UT& u) {return right(u); }; template <typename T> UUT duplicate (const UT& u) { return makeUniverse (leftCreator, rightCreator, u); }
  • 21. Generic makeUniverse template <typename T> UUT makeUniverse ( const std::function<UT(UT)>& leftCreator, const std::function<UT(UT)>& rightCreator, const UT& u) { std::vector<UT> lefts = tailOfGen(u.position, leftCreator, u); std::vector<UT> rights = tailOfGen(u.size() - u.position - 1, rightCreator, u); std::vector<UT> all; all.swap(lefts); all.push_back(u); all.insert(all.end(), rights.begin(), rights.end()); return { std::move(all), u.position }; }
  • 22. extract + duplicate + extend = comonad template <typename T> T extract (const UT& u) template <typename T> UT extend ( const func<T(UT)>& f, const UT& u) template <typename T> UUT duplicate (const UT& u)
  • 23. 23 Parallel computations in FP Container<B> map ( const std::function<B(A)>& f, const Container<A>& va); Container<B> mapPar ( const std::function<B(A)>& f, const Container<A>& va);
  • 24. mapPar template <typename A, typename B, template <class ...> class Container> Container<B> mapPar ( const std::function<B(A)>& f, const Container<A>& va) { Container<std::future<B>> pars = map(par(f), va); std::future<Container<B>> pRes = joinPars(pars); return pRes.get(); }
  • 25. template <typename A, typename B> std::function<std::future<B>(A)> par( const std::function<B(A)>& f) { return [=](const A& a) { return std::async(std::launch::async, [=]() { return f(a); } ); }; } par
  • 26. template <typename B> std::future<std::vector<B>> joinPars( std::vector<std::future<B>>& pars) { return std::async(std::launch::async, [&]() { std::vector<B> bs; bs.reserve(pars.size()); for (auto& it : pars) bs.push_back(it.get()); return bs; }); } joinPars
  • 27. 27 Parallel Game of Life benchmark ● 2 dimensions ● 2 states: A (“Alive”), D/space (“Dead”), // Pointed array of pointed arrays typedef Universe<Cell> LifeRow; typedef Universe<LifeRow> LifeField;
  • 28. A little bit harder... #define UT Universe<T> #define UUT Universe<Universe<T>> #define UUUT Universe<Universe<Universe<T>>> #define UUUUT Universe<Universe<Universe<Universe<T>>>> template <typename T> UUUUT duplicate2 (const UUT& u) template <typename T> UUT extend2 ( const func<T(UUT)>& f, const UUT& u) template <typename T> T extract2 (const UUT& u)
  • 29. extend vs extend2 template <typename T> UT extend ( const func<T(UT)>& f, const UT& u) { UUT duplicated = duplicate (u); return { map (f, duplicated.field), u.position }; } template <typename T> UUT extend2 ( const func<T(UUT)>& f, const UUT& uut) { UUUUT duplicated = duplicate2 (uut); return fmap2 (f, duplicated); }
  • 30. fmap2 template <typename T> UUT fmap2 ( const func<T(UUT)>& f, const UUUUT& uuut) { const func<UT(UUUT)> f2 = [=](const UUUT& uuut2) { // Something really complicated here with using of ‘f’. }; return { map (f2, uuut.field), uuut.position }; // parallelization: map -> mapPar }
  • 31. Game of Life benchmark Field side Sequential Parallel (microseconds) 50 484 283 100 3900 2291 150 12669 8005 200 30278 19415
  • 32. Game of Life on comonads, C++ ● Highly experimental ● Sequential, async and parallel GoL ● Simple 1D 3-state CA ● Functional design ● https://github.com/graninas/CMLife ● Клеточные автоматы и комонады, by Hithroc Mehatoko