SlideShare a Scribd company logo
5G Boot camp
NPI initiative
Saurav Sharma
Content
• 5G overview and NR Architecture evolution.
• NR spectrum | deployment options | NSA architecture | NSA bearers | ENDC configuration | VoLTE in NSA | SA architecture
| Virtual RAN | ESS | ORAN
• NR key techniques.
• Numerology | Waveform | time and frequency structure | frame structure | TDD pattern | Ultra lean design
• NR mobility corresponding features
• Mobility in NSA | Anchor Control Strategies & Solutions | associated mobility features.
• M-MIMO in NR
• M-MIMO & AAS overview | analog and digital beamforming | beam management.
• NR hardware product portfolio.
• AIR overview | AIR used in NR | classical radio in NR | BB in NR
• NR call flow
• NSA call flow
• NR performance management.
• NR performance monitoring | KPI & counter monitoring in 5G
Enhanced MBB
Critical MTC
Fixed Wireless
Access
Massive MTC
Why5G?
5Gspectrum
lower bands (MHz) mid bands (MHz) higher bands (GHz)
3600 4400 4500 4800 5000 24.5 27.5 37 42.5
missing bands
6 – 24 GHz
3000 3300 52.6
450
Sub 6Ghz
3GPP FR1
Baselinecapacity layer
• higher throughput
• wider spectrum BW (max 100 Mhz)
Suitable usecases
• eMBB, FWA, URLLC
millimeter wave
3GPP FR2
Extreme capacity layer
• Large spectrum BW (max
400 Mhz)
• high capacity &data rates
• Limited coverage
Suitable usecases
• eMBB, FWA, URLLC
(GHz)
Coverage layer
3GPP FR1
• wide area coverage
• deep indoor
• limited by spectrum BW
Suitable usecases
• eMBB, Indoor, Massive
IoT
5G spectrum MANA
600MHz, nationwide
launch on Dec 2nd
850MHz, initial launch
on December 12th
600MHz,
initial launch
on March 6th
39Ghz (BW 400MHz) 28Ghz (BW 400Mhz)
39Ghz (BW 400MHz)
Planned launch in
850Mhz
28Ghz (BW 133Mhz)
39Ghz (BW 100MHz)
2.5Ghz (BW
60Mhz)
H
M
L
3GPP“NR”Bands
Channel Bandwidths for Each NR band : FR1 Channel Bandwidths for Each NR band : FR1
Channel bandwidths for each NR band : FR2
Variable channel BW
Refer 38.101-1 Table 5.3.5-1 for details of Channel Bandwidths for Each NR band
3GPP connectivity options
Option 1 Option 2 Option 3 Option 4
Option 5 Option 6 Option 7 Option 8
5GCN
eNB
LTE
5GCN
gNB
NR
eNB
LTE
EPC
gNB
NR
eNB
LTE
EPC
eNB
LTE
5GCN
gNB
NR
eNB
LTE
5GCN
gNB
NR
EPC
gNB
NR
EPC
gNB
NR
eNB
LTE
CP
UP
5Garchitectureevolution
— Introduce 5GC and next generation services without
disturbing existing deployment (NR SA/Option 2)
— Fully leverageVoLTE for voice whileNR/5GC matures
— EPC-5GC interworking supporting migration
— Introduce NR air interface offerpeak data rates
early(NR NSA/Option 3)
— Fullyleverage VoLTE orfor voicewhile NR
matures
LTE LTE
EPC
LTE NR
LTE
5G EPC
LTE NR
LTE/NR
Option 1 Option 1 Option 3 Option 1 Option 3 Option 2
5G EPC + 5GC
Dual mode core
1 1 1
3 3
2
No impact to legacy services and in-market devices (incl. early 5G devices) while the network evolves
NR option 3X
NR
LTE
5G enabled CN
MME S-GW
NR
LTE
5G enabled CN
MME S-GW
S1’-U
NR
LTE
5G enabled CN
MME S-GW
S1’-U
Option 3a
Option 3 Option 3X
Decoding option 3X
• NR Non-Standalone (NR NSA)
• introduces the support for the 5G NR air-interface
using existing 4G LTE infrastructure.
• EN-DC solution
• Ericsson’s E-UTRA-NR Dual Connectivity (EN-DC)
solution is based on Option 3x:
• Signaling Bearer (SRB) & Data Bearer (DRB)
• LTE eNB terminates the S1 Control Signaling (S1-C)
from EPC and Signaling Radio bearer (SRB) towards
the UE.
• The user Data Bearer (DRB) is setup either as:
• Split bearer: using both LTE and NR radio resources
• LTE only bearer: using only LTE radio resources
• Split bearer & LTE only bearer
• NR gNB terminates the S1-U user plane of the Split
bearer for the NR UE.
• LTE eNB terminates the S1-U user plane of the LTE only
bearer.
• X2-C & X2-U interface
• The eNB and gNB have X2-C and X2-U connections,
where the user data of Split bearer is carried over
X2-U, and control signaling over X2-C.
DRB
NR UE
X2-U
S1-U
gNB
S1-C
User data
Control
signalling
S1-U
eNB
X2-C
EPC
SRB
DRB
ENDC configuration
BearerTypes
MAC & L1
Master Node (MN)
eNodeB, LTE
Secondary Node (SN)
gNodeB, NR
MAC & L1
Option 3x
SN Terminated
MCG DRB
PDCP
RLC RLC
PDCP
RLC
Option 3x
SN Terminated
Split DRB
PDCP
RLC
Option 1
MN Terminated
MCG DRB
PDCP
RLC
SRB
MN = Master Node
SN = Secondary Node
SRB = Signaling Radio Bearer
DRB = Data Radio Bearer
MCG = Master Cell Group
SCG = Secondary Cell Group
BearerTransitions
RLC
LTE (MN) NR (SN)
PDCP
MN Terminated
MCG DRB
Initial Context Setup /
Incoming Handover /
RRC Re-establishment
SCG Addition
SN Release
SN Release
MAC
RLC
PDCP
RLC
MAC
SN Terminated
Split DRB
LTE (MN) NR (SN)
SN Addition
MAC
L1
L1
RLC
PDCP
SN Terminated
MCG DRB
LTE (MN) NR (SN)
SCG Release
MAC
L1
L1
MN = Master Node
SN = Secondary Node
SRB = Signaling Radio Bearer
DRB = Data Radio Bearer
MCG = Master Cell Group
SCG = Secondary Cell Group
Split Bearer User Plane
Functions:
• Downlink User Plane
Switching
• Downlink User Plane
Aggregation
• Uplink User Plane
Switching
• Uplink User Plane
Aggregation
• Uplink-Downlink
Decoupling
A
B
C
NRlegsetupatinitialcontext
Measurement based NR Leg Setup:
If (eNB)ReportConfigB1GUtra.triggerQuantityB1 = SS_RSRP
then Event B1 is triggered when:
SS_RSRPNR > (eNB)ReportConfigB1GUtra.b1ThresholdRsrp+
(eNB)GUtranFreqRelation.b1ThrRsrpFreqOffset+
(eNB)ReportConfigB1GUtra.hysteresisB1 /2
is fulfilledfor:(eNB)ReportConfigB1GUtra.timeToTriggerB1
if (eNB)ReportConfigB1GUtra.triggerQuantityB1 = SS_RSRQ
then Event B1 is triggered when:
SS_RSRQNR> (eNB)ReportConfigB1GUtra.b1ThresholdRsrq / 10 +
(eNB)GUtranFreqRelation.b1ThrRsrqFreqOffset / 10 +
(eNB)ReportConfigB1GUtra.hysteresisB1 / 2
is fulfilled for: (eNB)ReportConfigB1GUtra.timeToTriggerB1
Configuration based NR Leg Setup:
Configuration-based involves a blind setup to a pre-configured NR
cell,The NR cell reference is defined with the following attribute:
EUtranCellFDD.extGUtranCellRef
If extGUtranCellRef is defined, then SN addition is configuration-based
BearerTransitions
RLC
LTE (MN) NR (SN)
PDCP
MN Terminated
MCG DRB
Initial Context Setup /
Incoming Handover /
RRC Re-establishment
SCG Addition
SN Release
SN Release
MAC
RLC
PDCP
RLC
MAC
SN Terminated
Split DRB
LTE (MN) NR (SN)
SN Addition
MAC
L1
L1
RLC
PDCP
SN Terminated
MCG DRB
LTE (MN) NR (SN)
SCG Release
MAC
L1
L1
MN = Master Node
SN = Secondary Node
SRB = Signaling Radio Bearer
DRB = Data Radio Bearer
MCG = Master Cell Group
SCG = Secondary Cell Group
Split Bearer User Plane
Functions:
• Downlink User Plane
Switching
• Downlink User Plane
Aggregation
• Uplink User Plane
Switching
• Uplink User Plane
Aggregation
• Uplink-Downlink
Decoupling
A
B
C
5G bootcamp Sep 2020 (NPI initiative).pptx
DownlinkFastSwitch
QCI
5
MN SN
QCI
9
LTE PDCP
LTE RLC
LTE MAC & L1
LTE RLC
NR MAC &
L1
NR RLC
NR PDCP
QCI
5
MN SN
QCI
9
LTE PDCP
LTE RLC
LTE MAC & L1
LTE RLC NR RLC
NR PDCP
DL Fast Switch
LTE
NR
Leg
NR MAC &
L1
DL UP Data sent
over LTE or NR Leg
DownlinkFastSwitch
Parameters:
endcDlNrLowQualThresh
endcDlNrQualHyst
endcDlNrRetProhibTimer
DownlinkEN-DCAggregation
Single Leg
NR
Single Leg
LTE
Aggregation
LTE + NR
Poor NR quality, lack of
NR CQI reports
Good NR quality
Poor NR quality, lack of
NR CQI reports
• FC is enabled
• PDCP buffer age > dcDlAggActTime
All packets sent and
acknowledged plus
dcDlAggExpiryTimer
NR RLF
Packets in PDCP buffer older than
threshold:
Start to schedule DL data on both
legs according to Flow Control
feedback information.
PDCP buffer empty: Start next
transmission in Single NR Leg
At NR Leg Setup PDCP will start to
transmit DL user data in the NR Leg
LTE
NR RLF
Poor NR quality detected: Resend
non-acknowledged packets in the
LTE Leg
NR RLF
Parameters:
dcDlAggActTime
dcDlAggExpiryTimer
DownlinkDCAggregation
QCI5
MN SN
QCI9
LTE PDCP
LTE RLC
LTE MAC & L1
LTE RLC
NR MAC & L1
NR
RLC
NR
PDCP
LTE Leg
NR Leg Parameters:
dcDlAggActTime
dcDlAggExpiryTimer
DL UP Data sent over
both LTE and NR Leg
ULLegSwitchingbetweenNRandLTE
QCI5
MN SN
QCI9
LTE PDCP
LTE RLC
LTE MAC & L1
LTE RLC
NR MAC & L1
NR RLC
NR PDCP
Switch from NR to LTE
-Triggered when poor NR quality
detected in UL
-Switch triggered immediately
UL Leg Switching from NR to LTE
QCI5
MN SN
QCI9
LTE PDCP
LTE RLC
LTE MAC & L1
LTE RLC
NR MAC & L1
NR RLC
NR PDCP
Switch from LTE to NR
-Triggered when good NR quality detected in UL
-UL Prohibit timer should prevent too frequent
switching
UL Leg Switching from LTE to NR
NRLegActivation
Parameters:
endcUlNrLowQualThresh
endcUlNrQualHyst
endcUlNrRetProhibTimer
UplinkUserPlaneAggregation
— Enables transmission of uplink user plane data simultaneously on both the MCG and SCG
— Improves the end user throughput
— Works independently of uplink user plane switching
UL User Plane
Switching
UE transmits on: MCG UE transmits on: SCG
Poor NR UL SINR
Good NR UL SINR
Primary path: SCG
UE transmits on: MCG & SCG
Primary path: MCG
UE transmits on: MCG & SCG
Poor NR UL SINR
Good NR SINR
Buffered data
above
threshold
Buffered data
below
threshold
Buffered data
above
threshold
Buffered data
below
threshold
UL User Plane
Aggregation
Primary path: MCG
UE transmits on: MCG
Primary path: SCG
UE transmits on: SCG
Parameters:
ulDataSplitThreshold
Uplink-DownlinkDecouplingforSplitBearer
UL & DL
UL & DL
Pathloss
NR
LTE
Limit of NR
Downlink
NR coverage extension due
to UL-DL decoupling
DL
Limit of NR
Uplink
DL
UL & DL
BearerTransitions
RLC
LTE (MN) NR (SN)
PDCP
MN Terminated
MCG DRB
Initial Context Setup /
Incoming Handover /
RRC Re-establishment
SCG Addition
SN Release
SN Release
MAC
RLC
PDCP
RLC
MAC
SN Terminated
Split DRB
LTE (MN) NR (SN)
SN Addition
MAC
L1
L1
RLC
LTE (MN) NR (SN)
PDCP
SN Terminated
MCG DRB
SCG Release
MAC
L1
L1
MN = Master Node
SN = Secondary Node
SRB = Signaling Radio Bearer
DRB = Data Radio Bearer
MCG = Master Cell Group
SCG = Secondary Cell Group
Split Bearer User Plane
Functions:
• Downlink User Plane
Switching
• Downlink User Plane
Aggregation
• Uplink User Plane
Switching
• Uplink User Plane
Aggregation
• Uplink-Downlink
Decoupling
A
B
C
QCI9
QCI5 QCI5 QCI1
VoLTE
setup
LTE RLC LTE RLC
LTE MAC & L1
MN
LTE PDCP NR PDCP
NR RLC
NR MAC & L1
LTE RLC
LTE PDCP LTE PDCP
LTE RLC LTE RLC
LTE MAC & L1
MN
SN SN
QCI9
NR PDCP
QCI5 QCI1
LTE PDCP
LTE RLC
LTE PDCP
LTE RLC LTE RLC
LTE MAC & L1
MN
LTE PDCP
QCI9
SN
Next
Mobility
Options for Voice in EN-DC
1. At VoLTE setup, any existing NR Leg is released. No more SN terminated bearers during the remaining voice call.
2. At the next mobility event, relocation of PDCP from SN to MN and VoLTE support as in legacy LTE.
QCI9
VoLTE
setup
QCI5
LTE
PDCP
LTE RLC LTE RLC
LTE MAC & L1
MN
NR PDCP
NR RLC
NR MAC & L1
SN
QCI5
LTE
PDCP
LTE RLC
QCI1
LTE
PDCP
LTE RLC LTE RLC
LTE MAC & L1
MN
QCI9
NR PDCP
NR RLC
NR MAC & L1
SN
Alternative configuration: Keep Split DRB during VoLTE call
VoLTE call + simultaneous NR data
supported with limited performance:
• TTI bundling cannot be activated
• Limited support for LTE mobility
with many RRC reconfigurations
• RRC Re-establishment triggers UE
release to idle mode
• X2 link break triggers UE release
to idle mode
Split Bearers with VoLTE Not Allowed
Split Bearers with VoLTE Allowed
EN-DC Profile allow/Prevent DRBs from Being Split
ARP Threshold Relation in EN-DC Profile for Allowing DRBs to Be Split
ARP Threshold Relation in EN-DC Profile for Preventing DRBs from Being Split
EN-DC Connectivity
High band
— Uplink CA (New)
— 50+50 MHz or 100+100 MHz
— Contiguous spectrum only
— Activated by gNodeB
— Secondary carrier takes user data only
CarrierAggregation
RLC
PDCP
RLC
SN Terminated Split DRB
LTE (MN) NR (SN)
HARQ1 HARQ6
MAC
…
CC1 CC6
L1
…
HARQ1 HARQ4
MAC
…
CC1 CC4
L1
…
SCG Resources
MCG Resources
Carrier
Aggregation
for NR
User Plane
Aggregation
Carrier
Aggregation
for LTE
NR Band LTE Carriers NR Carriers
Low-band (FDD) 6 CC 1 CC
Mid-band (TDD) 6 CC 1 CC
High-band (TDD) 6 CC 8 CC
NR Band LTE carriers NR carriers
Low-band (FDD) 1 CC 1 CC
Mid-band (TDD) 1 CC 1 CC
High-band (TDD) 1 CC 2 CC
— Downlink CA
— Increase in supported configurations
CC = Component Carrier
MN = Master Node
SN = Secondary Node
MCG = Master Cell Group
SCG = Secondary Cell Group
Why ESS ?
— Ericsson’s 5G main RAN competitive advantage:
— Introduce 5G in existing 4G bands without
hard/static refarming spectrum
— Smooth and fast migration
— Lowest TCO for 5G introduction
— Shared Radio + RAN Compute + Spectrum
Low band is considered for 5G deployment ESS is solution
ESS vs ISS
DSS (Dynamic Spectrum Sharing) has the following
characteristics:
• Frequency allocation granularity
— 100% NR, LTE 50%/NR 50%,100%LTE
• Time allocation granularity on 1ms
ISS (Instant Spectrum Sharing) has the following
characteristics:
• Frequency allocation granularity on RBG level
(DL)
• Possible FDM or TDM sharing
• Time allocation granularity on ~1 ms
20’Q1
(GA)
20’Q2
Time
LTE NR-NSA
Frequency
1ms
Dynamic Spectrum Sharing Instant Spectrum Sharing
LTE NR-NSA
Time
Frequency
1ms
20.Q2 prerequisites and limitations
Limitations:
●FDD only
●NSA
●No NB-IOT or CAT-M
●No combined cell
●2 and 4 antenna
●LTE transmission modes TM3, TM4, TM9
●Max 4 layers
●Review Feature Parity
Pre-requisites:
●Requires mixed mode BaseBand
●No 5 MHz
●BW and centerfrequencies must matchon LTE
and NR
ESS Knowledge Sharing Session (NPI)
Please find link for ESS KS delivered by NPI team
Session: 1:-
https://web.microsoftstream.com/video/78e8c6e1-199b-4ab9-b06e-9fbb0b671b67
Session: 2:-
https://web.microsoftstream.com/video/30f10a6d-120d-446e-b96f-22e8c4dd2dd7
3GPP 5G System (5GS)
-5G Core network and 5G-(R)AN
5GS
5GC
5G-RAN
• Authentication Server Function (AUSF)
• Core Access and Mobility Management Function (AMF)
• Data network (DN), e.g. operator services, Internet access
• Policy Control function (PCF)
• Session Management Function (SMF)
• Unified Data Management (UDM)
• User plane Function (UPF)
• Application Function (AF)
• User Equipment (UE)
• (Radio) Access Network ((R)AN)
BBU
Core
Network
DU
Core
Network
CU-UP
RRC
PDCP
RLC
MAC
PHY
PHY’’
MAC
RLC
CU-CP
RRC PDCP
Fronthaul
Backhaul
Fronthaul
Midhaul
Backhaul
CU/DUsplit-RANvirtualization
F1-C F1-U
E1
Architecture Change
— In 3GPP Release 15, BBU will splitinto CU and DU
— CU will further split into CU-CP and CU-UP
— CU will be virtualized on generic hardware, DU will not
— F1 and E1 interface standardized in 3GPP
Before Split After Split
CU
CU: Centralized Unit, CU-CP: CU Control Plane
CU-UP,vPP: CU User Plane, DU,vRC: Distributed Unit
vPP
vRC
Logical Network Functions:
RCF – Radio Controller Function
Corresponds to 3GPP logical entity CU-CP in a gNB
PPF – Packet Processing Function
Corresponds to 3GPP logical entity CU-UP in a gNB
RPF – Radio Processing Function
Corresponds to 3GPP logical entity DU in a gNB
5G network virtualization
Hub Central Office Aggregation Switching Primary
Antenna
Critical Comm. &
MTC
Enterprise &
Industry
Enhanced Mobile
Broadband
Massive
MTC
UPF
CCF
PPF
SDM
General Purpose Processor General Purpose Processor General Purpose Processor General Purpose Processor General Purpose Processor
UPF
CCF
PPF
SDM
UPF
CCF
PPF
SDM
UPF
CCF
PPF
SDM
UPF
CCF
PPF
SDM
BPF
BPF
BPF
BPF
PPF
BPF
BPF
BPF
RCF RCF RCF RCF RCF
UPF
CCF
PPF
SDM
UPF
CCF
PPF
SDM
UPF
CCF
PPF
SDM
UPF
CCF
PPF
SDM
UPF
CCF
PPF
SDM
UPF
CCF
PPF
SDM
UPF
CCF
PPF
SDM
UPF
CCF
PPF
SDM
UPF
CCF
PPF
SDM
UPF
CCF
PPF
SDM
RCF
RCF RCF RCF RCF
RCF RCF RCF RCF
UPF
CCF
PPF
SDM
UPF
CCF
PPF
SDM
UPF
CCF
PPF
SDM
UPF
CCF
PPF
SDM
UPF
CCF
PPF
SDM
RCF RCF RCF
RCF
RCF
RCF
ORAN
– Founded by 12 large operators, including AT&T, China Mobile, China Telecom, NTT DOCOMO, SKT, Verizon, DT, Orange, in
MWC Shanghai, June 2018
– Target: to drive RAN to be Intelligent, Open, Open Source, White-Box
– Now 7 Working Group established
Content
• 5G overview and NR Architecture evolution.
• NR spectrum | deployment options | NSA architecture | NSA bearers | ENDC configuration | VoLTE in NSA | SA architecture
| Virtual RAN | ESS | ORAN
• NR key techniques.
• Numerology | Waveform | time and frequency structure | frame structure | TDD pattern | Ultra lean design
• NR mobility corresponding features
• Mobility in NSA | Anchor Control Strategies & Solutions | associated mobility features.
• M-MIMO in NR
• M-MIMO & AAS overview | analog and digital beamforming | beam management.
• NR call flow
• NSA call flow
• NR hardware product portfolio.
• AIR overview | AIR used in NR | classical radio in NR | BB in NR
• NR performance management.
• NR performance monitoring | KPI & counter monitoring in 5G
› LTE: A single 15 kHz subcarrier spacing
– Normal and extended cyclic prefix
› NR supports sub-1GHz to several 10 GHz spectrum
range  Multiple numerologies required
– Flexible subcarrier spacing 2n∙15 kHz
– Scaled from LTE numerology
– Higher subcarrier spacing 🢥 Shorter symbols and
cyclic prefix
– Extended cyclic prefix only for 60 kHz
NR – Basic numerology Data [kHz]
<6 GHz 15, 30, (60*)
>6 GHz 60, 120
*Optional for UE, also supports ECP
Rel-15 supports the following numerologies
15 kHz 30 kHz 60 kHz 120 kHz 240 kHz
Main reason for having different numerology is high phase noise in higher frequency
SCS [kHz]
Max bandwidth
[MHz]
15 ≈50
30 ≈100
60 ≈200
120 ≈400
4096 FFT size as compare to 2048 in LTE
Out of 4K 3300 is used typically , as we use 1200 from 2048 in LTE
3300 * 15 = 50Mhz , 3300*30 = 100 Mhz etc..
NR - Numerology (Data)
• 30 kHz subcarrier spa ing is supported in 18.Q4 for FR1 (< 6 G z)
Low frequency
Low-medium
frequency (Optimized
CP)
60 kHz, ECP mmW
Subcarrier spacing 15 kHz 30 kHz 60 kHz 120 kHz
Slot duration 1000 µs 500 µs 250 µs 125 µs
Slot illustration
OFDM symbol, duration 66.67 µs 33.33 µs 16.67 µs 8.33 µs
Cyclic prefix, duration 4.69 µs (6.6%) 2.34 µs (6.6%) 4.17 µs (6.6%) 0.59 µs (6.6%)
OFDM symbol including
cyclic prefix
71.35 µs 35.68 µs 20.83 µs 8.92 µs
Max carrier bandwidth
(assuming 4k FFT)
400 MHz
c 50 MHz 100 MHz H 200 MHz
Spectrum trade-off
High band
24 Ghz to 40 Ghz
Mid band - 2
3.5 Ghz to 6 Ghz
Mid band - 1
1Ghz to 2.6 Ghz
low band
Sub 1 Ghz
Coverage Bandwidth latency
— Higher numerology 🢥 Shorter slot 🢥 Lower latency
— But also shorter cyclicprefix 🢥 Less robust to channel time
dispersion
— Radio frame duration is 10 ms
— Subframe duration is 1 ms
— One slot = 14 symbols
— One resource block = 12 subcarriers
NR– Time/FrequencyStructure
1 slot = 1000 µs
1 slot = 500 µs
125 µs
15 kHz
low band
1 OFDM symbol = 35.68 µs (incl CP 2.34 µs)
30 kHz
mid-band
120 kHz
mmW
1 OFDM symbol = 71.35 µs (incl CP 4.69 µs)
1 OFDM symbol = 8.92 µs (incl CP 0.59 µs)
Radio Frame vs Numerology
Frame Structure
› Subframe – 1 ms
– Numerology-independent clock
› Slot Type A – 14 OFDM symbols
– Length in ms scales with numerology
– Aligned with subframe boundaries
– Typical scheduling unit (TTI)
› Slot Type B – “Mini-slot”
– 2, 4 or 7 OFDM symbols (December rel 15)
– Can start at any symbol boundary
– One way to reduce latency
15 kHz
30 kHz
60 kHz
One subframe (1 ms)
One slot One “mini-slot”
Waveform
› OFDM is the basis for UL and DL
– Symmetric design, same waveform in UL and DL
– Full support of MIMO in DL and UL
– Flexible Numerology
OFDM
mod.
Modulation
symbols
Map each modulation symbol to
a specific time/frequency element
Modulation symbols spread
in frequency domain
OFDM
mod.
Modulation
symbols
DFT
› Complementary DFT-spread OFDM for UL
– To reduce PAPR and improve coverage
– Limited to single-layer transmissions
– Network controls whether to use DFT-precoding or not
› DFT-S-OFDM is referred to as “Transform Precoding” in 3GPP
DFTS-OFDM Waveform in Uplink feature
Gives the Operator customer possibility to more efficiently utilize the UE power in their network
• Enables the operator to configure the cell such that UE Msg3 transmission is either:CP OFDM or DFTS OFDM
• Enables the operator to configure the cell such that UE (Non Msg3) transmission is either:CP OFDM or DFTS OFDM
Configuration
OFDM - Orthogonal Frequency Division
Multiplexing
Benefits
+ Frequency diversity
+ Robust against ISI
+ Easy to implement
+ Flexible BW
+ Suitable for MIMO
+ Classic technology
(WLAN, ADSL etc)
Drawbacks
- Sensitive to doppler and freq
errors
- High PAPR
- Overhead
› Orthogonal: all other subcarriers zero at sampling point
› Sub carrier spacing Δf= e.g 15, 30, 60, 120, 240, 480 kHz
› Delay spread << Symbol duration < Coherence time
f
Δf
NR TDD UL/DL Patterns
— 3GPP Rel15 has provided large flexibility of TDD patterns , following are supported by Ericsson
Special Slot Configuration
Activating TDD pattern 4:1
› Minimize network transmissions not directly related to user-data delivery
– Baseline: resources are treated as undefined unless explicitly indicated otherwise
– Reference signal transmissions and measurements are scheduled (i.e. DM-RS instead of
CRS)
› Future-proof design, energy efficiency, interference minimization
Ultra-Lean Design
Ultra-lean
• No ”always-on” refeference signals
• Minimum amount of ”always-broadcast ”system information
• ...
Today
• Reference signals
• Broadcast” system information
• ...
LTE vs NR
Content
• 5G overview and NR Architecture evolution.
• NR spectrum | deployment options | NSA architecture | NSA bearers | ENDC configuration | VoLTE in NSA | SA architecture
| Virtual RAN | ESS | ORAN
• NR key techniques.
• Numerology | Waveform | time and frequency structure | frame structure | TDD pattern | Ultra lean design
• NR mobility corresponding features
• Mobility in NSA | Anchor Control Strategies & Solutions | associated mobility features.
• M-MIMO in NR
• M-MIMO & AAS overview | analog and digital beamforming | beam management.
• NR hardware product portfolio.
• AIR overview | AIR used in NR | classical radio in NR | BB in NR
• NR call flow
• NSA call flow
• NR performance management.
• NR performance monitoring | KPI & counter monitoring in 5G
MobilityStates(CoreNW&UE)
Connected to Idle
(User inactivity, etc)
Detach
EMM-REGISTERED
Idle to Connected
(User activity, paging etc)
EMM-DEREGISTERED
ECM-IDLE
ECM-IDLE ECM-CONNECTED
Detach Attach
IdleModeBehaviorforEN-DC-capableUEs
— EN-DC capable UEs are camping in LTE, i.e.the
following idlemode tasks are performed in LTE
— PLMN selection
— System information acquisition
— Cellselectionand reselection
— Tracking area update
— Paging
— Idle mode behavior for EN-DC capable UEs are
identicalto idlemode behavior for legacy LTE
UEs
MCG DRB Split DRB
MeNB
SgNB
LTE PDCP
LTE RLC LTE RLC
LTE MAC
NR PDCP
NR RLC
NR MAC
EN-DCBearerTypeTransitions
— NR Leg Setup
— Bearer is reconfiguredto an
SN terminated Split DRB
— Change of PDCP version
and security key
— Measurement based setup
(B1) or configuration based
setup (blind)
— Initial ContextSetup
— Bearer is set up as
MN terminated MCG
DRB
— User plane data over
LTE radio only
— NR Leg Release
— Bearer type is changed to
MN terminated MCG DRB
— Change of PDCP version
and security key
— Triggeredby e.g.NR RLF,
NR Celllock,
— Release to Idle mode
– UE is released to IDLE
mode
– Any resources for the
Split DRB in the eNB and
the gNB are released
MN terminated
MCG DRB
SN terminated
Split DRB
Initial Context
Setup
NR Leg Setup
(entering NR coverage)
NR Leg Release
(leaving NR coverage)
Release to Idle mode
Release to Idle
mode
Mobilityin18.Q4
LTE
frequency
NR
frequency
NR Cell B
LTE Cell B
NR Cell C
NR Cell A
UE enters RRC
connected mode
NR Leg Setup
Cell A
NR Leg
Release NR
Cell A.
B1 report (NR
Cell B)
NR RLF
NR Leg
Setup NR
Cell B
NR Leg
Release NR
Cell B.
NR RLF
NR Leg
Setup NR
Cell C.
NR Leg
Release
NR Cell C.
NR Leg
Setup NR
Cell C.
NR RLF
NR Leg
Release NR
Cell C.
Legacy LTE HO
LTE Cell A
B1 report (NR
Cell C)
B1 report
(NR Cell C)
Intra-freq
Event A3 (2)
Intra-freq
Event A3 (1)
Mobilityincurrentrelease
UE mobility
B1 report
SN Addition
NR Cell B
NR Cell B
NR Event A3
PSCell
Change
Data Bearer
Setup
LTE Cell A
Configure B1
B1 report
SN Addition
NR Cell A
LTE Event A3
SN Release
NR Cell B
Legacy LTE
HO Cell A to B
Configure B1
NR Cell A
NR Radio
Link Failure
SN
Release
NR Cell B
Configure B1
LTE Cell A LTE Cell B
NR Intra-Frequency
Mobility
5G Event Measures Use Main Controlling Parameter
NSA B1 NR To detect NR coverage for SN addition (eNB).ReportConfigB1GUtra.b1ThresholdRsrp
NSA A3 NR To facilitate intra-frequency mobility
(PSCell Change) on NR NSA
(gNB).ReportConfigA3.offset
NSA A5 LTE To detect coverage from potential LTE
anchor cells for EN-DC triggered handover
(eNB).ReportConfigEUtraInterFreqLb.a5Threshold1Rsrp
NRIntra-FrequencyHandover
withSplitBearer
UE mobility
4) B1 report
5) SN Addition,
(including addition of
NR Cell B)
1) NR Event A3
2) SN Release,
(including release of
NR Cell A)
3) Configure B1
NR Cell A NR Cell B
LTE Cell
UE mobility
1) NR Event A3
2) PSCell Change
NR Cell A NR Cell B
LTE Cell
NR Intra-FrequencyHandoverfeature
Intra-gNB PSCell Change
Configurations
Create NR frequency relations from the NR cells NR cell relations are needed between the 2 NR cells
Report configuration for UE A3 measurement :ReportConfigA3
Configurations
Mobilityincurrentrelease
UE mobility
B1 report
SN Addition
NR Cell B
NR Cell B
NR Event A3
PSCell
Change
Data Bearer
Setup
LTE Cell A
Configure B1
B1 report
SN Addition
NR Cell A
LTE Event A3
SN Release
NR Cell B
Legacy LTE
HO Cell A to B
Configure B1
NR Cell A
NR Radio
Link Failure
SN
Release
NR Cell B
Configure B1
LTE Cell A LTE Cell B
NR Intra-Frequency
Mobility
NR Coverage-TriggeredSecondary Node Release ,this will detect edge of NR coverage , so
that SN release can be triggered in gracefully way without waiting for RLF.
NRCoverage-TriggeredSecondaryNodeRelease
— Part of gNodeB featureLTE-NR Dual Connectivity
— A2 criticalmeasurement configured in UE
— Key parameters:
— NRCellCU.mcpcEnabled = true
— McpcPSCellProfile
— rsrpCriticalEnabled = true
— rsrpCritical.threshold
— rsrpCritical.hysteresis
— rsrpCritical.timeToTrigger
— When gNodeB receivesA2 itinitiates SN release
— A2 must be setbelow B1 threshold
Pathloss
NR
LTE
A2 Critical
(for SN release)
B1
(for SN addition)
NR Coverage-Triggered Secondary Node
Release
AnchorCarrierConsiderations
Any LTE carrier can be used as the anchor for EN-DC connections…
…however,in a given deployment some carriers may be unsuitable:
— EN-DC Band Combinations not Standardized
— UE’s don’t Support EN-DC Band Combinations
— UE don’tSupport Simultaneous Rx &Tx on theCombination
— Potential IM Interference In Band Combination
— LTE Carrier Hosted on Old Baseband
— Other Considerations
— Load, Coverage, Capacity
— ESS Considerations
—
—
ESS carrier cannot be used as anchor to itself
However, LTE frequency may be used as anchor for another NR NSA frequency
NR NSA Carrier
LTE Carrier 3
LTE Carrier 2
LTE Carrier 1




 
5G_HO_Go 5G_Cov_Stay 5G_LB_Stay
AnchorCarrierControl– StrategyComponents
?
LTE – Anchor Carrier
LTE – Non-Anchor Carrier
 
Idle Mode
Reselection
5G_Idle_Go 5G_Idle_Stay
Connected Mode
Handover
DifferentiationMechanisms
— UE Capability
— UE informs the eNodeB of EN-DC capability
— Also considers “NR Restriction” in HRL
— SPID (Subscriber Profile ID for RAT/Frequency Priority)
— Number from 1 to 256
— Set per subscriber in the HSS
— Sent from HSS toMME toeNodeB
— QCI (Quality of Service Class Indicator)
— Number from 0 to 255
— Set persubscriber and APN in the HSS
— Sent from HSS to MME to eNodeB
— Can be re-mapped using SPID in eNodeB
Differentiation
5G
Non-5G
?
AnchorControlStrategies&Solutions
Strategy
Component
Mechanism for Differentiating 5G UEs
UE Capability SPID QCI
5G_Idle_Go CAIMC STM -
5G_Idle_Stay CAIMC STM -
5G_Cov_Stay - STM & MCPC MLSTM
5G_HO_Go ENDCHO STM & MCPC MLSTM
5G_IFLB_Stay BIC STM SSLM
Each box represents a solution,
using the listed features.
Each has a section in the guideline.
SPID = Subscriber Profile ID
QCI = Quality of Service Class Indicator
CAIMC = Capability Aware Idle Mode Control
ENDCHO = EN-DC Triggered Handover
BIC = Basic Intelligent Connectivity
STM = Subscriber Triggered Mobility
MCPC = Mobility Control at Poor Coverage
MLSTM = Multi-Layer Service-Triggered Mobility
SSLM = Service-Specific Load Management
— CAIMC encourages UEs in idle mode to move to a
frequencythat they can use for EN-DC
— Normally, in idle mode UEs use
cellReselectionPriority values, broadcast in
system information to guide reselection
— With CAIMC these values are overridden with dedicated
values
— Supplied to UE at connection release in IMMCI
message
— Highest prioritiesgiven to EN-DC capable
frequencies
— UE uses these instead of prioritiesbroadcast in
system information
— Impacts only EN-DC capable UEs
— If more than one EN-DC capable target frequency
— Prioritizebased on hit rate ifBNR or CSM active
— Prioritize based on EN-DC capable cellcount ifnot
CapabilityAwareIdleModeControl(CAIMC)
Pathloss
LTE
Prio = 5
(anchor)
LTE
Prio = 6
(anchor)
LTE
Prio = 7
(non anchor)
NR
NR
Hit Rate Ranking (example)
Hit Rate Ranking If UePolicyOptimization.coverageAwareImc = true and either the Best Neighbor
Relations for Intra-LTE Load Management (BNR) feature or the Cell Sleep Mode (CSM) feature is active, then
CAIMC uses the hit rate statistics from the active feature to rank frequencies. If both features are active, then
CAIMC uses the hit rates from BNR. For ranking
Cell Count Ranking If UePolicyOptimization.coverageAwareImc = false or if neither BNR nor CSM
is active, then, for ranking, CAIMC uses the number of EN-DC capable neighbor cells on each frequency.
Configuration
• Activate feature
• Activate license for this feature CAIMC (License
number :CXC 4012371)
• Configure cell as EN-DC capable
• EN-DC
• EUtrancellFDD/TDD::endcAllowedPlmnList
• endcAllowedPlmnListshould not be empty
to be considered cell as EN-DC capable
• Basic Intelligent Connectivity (FAJ 801
1013) should be enabled when configuring
cell as EN-DC capable
EN-DCTriggeredHandover(ENDCHO)
LTE
(non-anchor)
NR
NSA
LTE
(anchor)
4G 5G
5G
4G
5G
5G 4G
ENDCHO 
B1 
A5 
ENDCHO 
B1 
A5 
ENDCHO 
B1 
A5 
— Hands over UEs from cells in which they can’tuse EN-DC
to cells in which they can use EN-DC
— Triggered at initial context setup (i.e.in connected mode)
— Configures measurements in UE to detectcoverage:
— B1 and A5 configured together
— HO triggered when B1 and A5 received
— B1 first,then A5 within 120 ms
— After HO, new B1 measurements for SN addition 
— ENDCHO configures up to 3 sets of measurements
— Similar to those configured by BIC for SN Addition
— NR frequencies: B1 Event: endcB1MeasPriority
— LTE frequencies: A5 Event: endcHoFreqPriority
— Same thresholds as IFLB: a5Threshold1Rsrp,
a5Threshold2Rsrp, hysteresisA5
Feature Description
LTE and NR frequency selection
NR 2
NR 1
EN-DC EN-DC
ENDCHO
EN-DC
UE_D3
EN-DC

UE_B3
ENDCHO
UE_A3 UE_B4
LTE 1
UE_A1 UE_D2
UE_B2
UE_A2
LTE 2
endcB1MeasPriority = 5
ENDCHO
No EN-DC
UE_A4
EN-DC
No EN-DC
   
EN-DC
endcHoFreqPriority  -1
EN-DC
UE_D4

 
= EN-DC Configured = EUtranFreqRelation
ENDCHO– InteractionofUECapability,PriorityandCoverage
endcB1MeasPriority = 7
 Measured second
UE_B1 UE_D1
Measured first 
Configuration
Feature Activation on the ENB
endcHOFreqPriority for EN-DC capable cells need to be set to higher priority
Configuration
ReportConfigEUtraInterFreqLb for the source non-endc cell
Endcmeastime
ENDCHOFeatures
LTE1
(Baseband Node)
LTE2
NR
C
1) Legacy LTE
Intra-Frequency HO
8) SN Addition
3) B1 report
4) A5 report
5) ENDCHO
6) Configure B1
7) B1 report
8) SN Addition
3) B1 report
5) ENDCHO
6) Configure B1
7) B1 report
1) Setup on LTE
2) Configure A5 and B1
4) A5 report (<240 ms)
Stationary UE
A
EN-DC Triggered Handover
During Connected Mode Mobility
EN-DC Triggered
Handover During Setup
2) Configure B1 and A5 1) Setup on LTE
2) Configure A5
3) A5 report
4) ENDCHO
5) Configure B1
6) B1 report
7) SN Addition
B
Stationary UE
Basic EN-DC Triggered
Handover During Setup
LTE1 LTE1
(DU Node)
— EN-DC Triggered
Handover During Setup
— BasicEN-DC Triggered
Handover During Setup
— EN-DC Triggered
Handover During
Connected ModeMobility
Moving UE
Packet Forwarding at NR Leg Release
• The introduction of packet forwarding over X2-U (SgNB to MeNB) will ensure that no packets are lost at NR Leg
Release. This will reduce the number of dropped packages during mobility and/or other reasons where an SN release is
needed.
• This avoidance of DL packet loss will reduce retransmissions on higher protocol levels. Retransmissions may trigger TCP
slow start which would lower the traffic rate for a period of time.
RLC
LTE (MN) NR (SN)
PDCP
MN Terminated
MCG DRB
Initial Context Setup /
Incoming Handover /
RRC Re-establishment
SN Release
MAC
RLC
LTE (MN) NR (SN)
PDCP
RLC
MAC
SN Terminated
Split DRB
SN Addition
MAC
L1
L1
L1
SNReleasewithPacketForwarding
UE MeNB SgNB
RRC:
RRCConnectionReconfigurationComplete
RRC:
RRCConnectionReconfiguration
X2AP:
SGNB RELEASE REQUEST ACKNOWLEDGE
X2AP:
SN STATUS TRANSFER
X2AP:
SGNB RELEASE REQUEST
X2AP:
UE CONTEXT RELEASE
Packet Forwarding
Tunnel PDCP SDUs
UE MeNB SgNB
RRC:
RRCConnectionReconfigurationComplete
RRC:
RRCConnectionReconfiguration
X2AP:
SGNB RELEASE CONFIRM
X2AP:
SN STATUS TRANSFER
X2AP:
SGNB RELEASE REQUIRED
X2AP:
UE CONTEXT RELEASE
Packet Forwarding
Tunnel PDCP SDUs
MN Initiated SN Initiated
●There is no new MO class and attribute introduced by this feature
Feature activation
●The license Basic Intelligent Connectivity shall be enabled
●System constant “enableX2PacketForwardingAtSnRelease(4325)” used to
enable this feature on the MeNB
ConfigurationManagement
DataBearerAddition
Bearer
Addition
From
Connected
Mode
PDCP
RLC RLC
MAC & L1
LTE (MN)
SRB QCI5
PDCP
RLC
QCI7
PDCP
MN terminated
MCG DRB
RLC
NR (SN)
QCI9
PDCP
SN terminated
Split DRB
PDCP
RLC
MAC & L1
LTE (MN)
SRB QCI5
PDCP
RLC
MN terminated
MCG DRB
RLC
NR (SN)
QCI9
SN terminated
Split DRB
RLC
MAC & L1
PDCP
RLC
MAC & L1
RLC
QCI9
PDCP
RLC
MAC & L1
— Previously, added data bearers were always set up as MN Terminated MCG bearers
— Now, data bearers can be added eitheras MN terminated or SN terminated
MN = Master Node
SN = Secondary Node
MCG = Master Cell Group
SCG = Secondary Cell Group
DRB = Data Radio Bearer
Content
• 5G overview and NR Architecture evolution.
• NR spectrum | deployment options | NSA architecture | NSA bearers | ENDC configuration | VoLTE in NSA | SA architecture
| Virtual RAN | ESS | ORAN
• NR key techniques.
• Numerology | Waveform | time and frequency structure | frame structure | TDD pattern | Ultra lean design
• NR mobility corresponding features
• Mobility in NSA | Anchor Control Strategies & Solutions | associated mobility features.
• M-MIMO in NR
• M-MIMO & AAS overview | analog and digital beamforming | beam management.
• NR call flow
• NSA call flow
• NR hardware product portfolio.
• AIR overview | AIR used in NR | classical radio in NR | BB in NR
• NR performance management.
• NR performance monitoring | KPI & counter monitoring in 5G
AntennaTerminology
A dual-polarized antenna element
Consisting of two antenna elements
A Subarray of dual-polarized antenna elements
A subarray always has two radio chains 2T2R
An antenna array of subarrays
In this case 64T64R
+ 3dB
Directivity
Gain
Double
Antenna
Area
Array Size Matters
Size Matters for Performance
ARRAYS o f Subarrays
Unused beam
directions
+60°
+15°
-15°
-60°
+15°
-15°
+60°
-60° +60°
+60°
-60°
-30°
› More subarrays (= more transmitters / receivers) will not always give higher capacity!
› Choose array size based on the UE angular distribution.
+30°
-30°
+30°
-60°
Antǐnna configurations
32T32R
32 subarrays
4x4x2 ports
2x1 subarray
4x8x2 ports
2x1 subarray
64T64R
64 subarrays
8T8R
8 subarrays
1x4x2 ports
8x1 subarray
Antennaconfigurationdependsondeploymentscenario
+60°
+10°
-10°
+60°
+30°
64T64R Radio gives better performance than 16T16R
— 64T64R vertical beamforming and better interference control
Each Dot is a UE seen as from RBS
Each subarray is 2T2R
High Rise Urban Scenario
Large vertical angle
16T16R
(8x1)x(1x8)
16T16R equals 64T64R performance
— Same horizontal beamforming
ability
Suburban, Rural Scenario or low rise Urban
In Suburban or low rise urban cells there is no big performance difference between 16T16R and 64T64R
Antenna matrix (Mid vs high band)
4
rows
24 columns
Subarray with
2-4 2-pol elements
192 TRX AAS
Digital Beamforming Analog Beamforming
4
rows
8 columns
Subarray with
2-4 x-pol elements
High band (AIR 5331)
Antenna Branches
Antenna Matrix (row x col)
Weight
Dimensions
768T768R
4 x 24, (2x1 subarray)
14 kg
600x305x110 mm
Mid band (ex. AIR 6488)
Antenna Branches
Antenna Matrix (row x col)
Weight
Dimensions
64T64R
8 x 8, (2x1 subarray)
~45 kg
800*400*150 mm
Massive MIMO
• MIMO
• Beamforming , Diversity , Spatial multiplexing , precoding (codebook
or non codebook based)
• SU-MIMO , MU-MIMO
• So what is Massive MIMO
• Generally more than 8T8R , high gain BF is achieved , we can steer
narrow beam , so improve coverage.
• CSI Acquisition
• But system should know where to direct this narrow beam , this is
done based on feedback from UE
• Two ways to get feedback:
• CSI feedback from UE (PMI , CQI , RI)
• Reciprocity CSI (using SRS) , can be used for TDD.
• NR MIMO
• Analog and digital beamforming.
• Beam management.
𝑆
𝐶 = 𝐵 ⋅ log2 1 +
𝑁
Claude Shannon Theory
𝐶 ≈ 𝐵 ⋅ 𝑆
when
𝑆
≪ 1
𝑁 𝑁
Bandwidth
(To support Higher
frequency BW need
Beamforming is
must)
Improve
SINR
(Beamforming is key
technology to improve
SINR)
Coverage
At high frequency (mmWave)
Coverage at high frequency
Capacity
MU-MIMO is enabled as SINR is improved due
to beamforming , enhancing capacity
Why beamforming ???
MassiveMIMO gains
— Multi-User MIMO
— Multiple streams to multiple UE
— Multiple UEs reuse same
frequency-time resources
— Capacity gain in high load
and when channel is suitable
— Single-User MIMO
— Multiple streams to the same UE
— Sharp beam follows UE
— Higher SINR increases data rate
— Benefit irrespectiveof load
— CellShaping
— Definecellshape tofitUE
distribution
— Decreases the inter cell
interference
Array gains
Array gains +
MU-MIMO
gain
CellShaping
CommonChannelBeamforming
High-rise (HPBW: H = 20°, V= 30°)
Hotspot (HPBW: H = 65°, V= 30°)
Macro (HPBW: H = 65°, V= 8°)
SingleuserMIMO (SU-MIMO)
— In SU-MIMO one user pertime-frequency
resource on all layers
— User specific BF provide array gain
— SINR increases as #antennas increase
— Benefits regardless of load
Layer 1
Layer 2
UE 1
UE 2
UE 3
UE 4
time
MultiuserMIMO(MU-MIMO)
— In MU-MIMO multiple users are using thesame
resources
— Since power is shared between layers, SINR will
reduce with increasing no of MU-MIMO layers
— MU-MIMO is beneficial if
— UEs are BW limited,i.e.have maxed out capacity
in good SINR
— More layers available than UE capability
— MU-MIMO prerequisite
— There are UEs to “pair”,and
— These UEs are spatially separated, and
— The combined cellbitrate is higher than the bit
rate a single UE could get
UE 1
UE 2
UE 3
UE 4
Layer 1
Layer 2
Layer 3
Layer 4
Layers – Number of data streams transmitted or received
Beam – A beam consisting of one or two polarizations
Rank – Number of layers to a single UE (reported by UE)
#LAYERS:DLMU-MIMO
Highlyloaded scenario
— 4-6 layers useful
— Mostly not exceeded in normal
operation
— 8 layers further gains
— At high load
— 16 layers
— Limited extra gain
— Only extreme load
— 32 layers no gain
— Sometimes losses
Most of the MU-MIMO gain from 8 layers. < 5% additional gain with 16.
Advanced Antenna System
— TRXs integrated in the antenna array
— Two PA persub-array
— Baseband controls each sub-array
— Adaptable &flexible weighting
— Full dimension beamforming
— ‘User’and ‘Cell’specific beamforming in
horizontal and verticaldomain
AAS(advancedantennasystem)
Baseband
Antenna
ports
Sub-array
weights
PA
PA
‘User’ and ‘Cell’ specific beamforming in
horizontal and vertical domain
Active array antenna
Baseband
1 sub-array
Adaptable
horizontally &
vertically
Digital vs Analog Beamforming
• Digital BF (Low and Mid Band
products)
• The weights are applied in the Baseband before D/A
conversion
• Most Flexible and best performance:
• Different Weights per frequency blocks (PRBs)
• Different weights in the same frequency block at
same time (layers)
• Possible to transmit to several users
simultaneously in different beams
• Analog BF (mmW first releases)
• The weights are applied in the time domain after D/A
conversion.
• Same weights (beam) for an entire timeslot
• With 2 polarizations, can do two beams per timeslot
• Simple but inefficient use of spectrum
Time
Time
WHY 2Q2L+g gǐ2Mf+1MIQg
Analog&HybridBeamforming
Time
Time
Time
Coding and
Modulation
IFFT DAC
v
RF
v
RF
Coding and
Modulation
IFFT DAC
v
RF
v
RF
Coding and
Modulation
IFFT DAC
v
RF
v
RF
Analog beamforming
Hybrid beamforming
Several parallel analog networks that allows multiple
beams/layers simultaneously
WhatisthedifferencebetweenLTErel-14
andNRMIMO?
Formid band (below ~6GHz)
— NR and LTE Rel.14 similar in many ways:
— Same/similar codebooks
— Same/similar support for antenna port
layouts
— Main difference:
— The framework for transmitting reference
signals is more flexible in NR
Forhigh band (above 6GHz)
— A set of “beam management features” have
beendefined
— Will support beam-tracking like techniques
Active link
Monitored link
ControlChannelBeamforming-Midband
FAJ1214998
Description
— Three coverage profiles (macro,hot spot, high-rise) are
supported for cellshaping
— All common channels as wellas the envelop of the UE specific
traffic beams are aligned to these profiles
— Ericsson Solution
— Control Channel Beamforming uses an Ericsson proprietary
implementation that maintains coverage while maintaining full
power resulting in coverage advantage
Benefit
— Suitable cellshape profilecan be selectedfor the deployment
scenario
— Up to +6 dB control channel coverage advantage
Massive MIMO
MassiveMIMO -Midband
FAJ1214911
Description
— Provides support for Massive MIMO in mid frequencybands
— Support for digital beamforming
— Codebook-based SU-MIMO with up to 4 DL layers and 1 UL layer
— Horizontal and vertical beamforming
— The system will choose between 8/16/32 CSI-RS based on
different UE capabilities
— Optimal low layer split architecture with eCPRI
Benefit
— Enhanced coverage with directional beamforming
— Improved network capacity and increased user data rate
— Reduced interferenceand improved cell-edge throughput
Massive MIMO
NR M-MIMO (mid band)
Single-User MIMO Configuration Options for
codebook-based transmission
Single-User MIMO Configurations
The supported, configurable combinations of the following feature
characteristics are categorized:
• Coverage shape
• Number of CSI-RS ports
• Codebook configuration setting in radios using single-user MIMO
The following configuration status options are used:
• Preferred : A safe and standard configuration considering
performance impact.
• Non-standard : A functional configuration where optimal
performance is not guaranteed.
• Infeasible: A configuration not possible for one of the following
reasons:
• It is not available for the given radio unit type.
• The target coverage shape is not achievable by the CSI-RS
port and codebook configuration setting.
5G bootcamp Sep 2020 (NPI initiative).pptx
5G bootcamp Sep 2020 (NPI initiative).pptx
DownlinkMulti-UserMIMO -Midband
FAJ1215130
Description
— Provides support for spatial multiplexing in the downlink
using Type I codebook based MU-MIMO
— Up to 8 simultaneous PDSCH layers to differentUEs,
e.g.4 UEs with 2 layers each
— The DL layers are co-scheduled on the same time and
frequency resources
— Massive MIMO Mid Band value package is required
Benefit
— Improved spectral efficiency
— Increased capacity
— Increased cellthroughput
Massive MIMO performance
UplinkMulti-UserMIMO-Midband
Enhanced-N20.Q4:FAJ1215011
Description
— Provides support for spatial multiplexing in the uplink
— Up to two layers PUSCH based on fullInterference
Rejection Combining (IRC) advanced receiver
— The UL layers are co-scheduledon the same time and
frequencyresources
— Dependencies
— Massive MIMO Mid Band enabler value package
— Supported on AAS products
— Enhanced in N20.Q4 to support up to 4 UL layers
Benefit
— Increased uplink throughput
— Increased spatial resource and uplink capacity due to
spatial multiplexing
Massive MIMO performance
MassiveMIMO - Highband
N20.Q4:FAJ1214910
Description
— Provides support for Massive MIMO in high frequencybands
— 28 GHz and 39 GHz frequency bands
— Analog beamforming
— Codebook-based SU-MIMO with up to 2 layers in DL and UL
— Measurements based on SSB and CSI-RS are used tofind and
maintain thebeam pair between the UE and thegNB
— In downlink, beam management is based on
— P1: InitialgNodeB Tx beam sweep
— P2: gNodeB Tx beam sweepfor refinement and beam tracking
— P3: UE Rx beam sweep for refinement
— In uplink,beam management is based on beam correspondence
Benefit
— Enhanced coverage with highly directional beamforming
— Reduced interferenceand improved cell-edge throughput
Base Package
Description
— Coverage optimized CSI reporting
— CSI feedback for P2 tracking isscheduled withoutUL-SCH for
the UEs with compromised uplinkcoverage
— P2 CSI-RS optimization
— Allocate CSI-RS in 1 slot instead of 2 slots for P2 tracking and
refinement forcertain radio typeconfigurations
— Schedule PDSCH data in unused symbols and slots
Benefit
— The beam management P2 related signaling becomes morerobust
and stable forthe UEs with poor uplink coverage. P2 tracking
performance is improved and number of link failures can be reduced
— Reduced DL overhead from improved efficiency ofCSI-RS scheduling,
depending on radio type configurations
— Increased throughput for all radio types as unused symbols are used
for DL data
EnhancedBeamManagement-Highband
N20.Q4:FAJ1215217
Base Package
MassiveMIMO High-Band
— DL cellshaping
— PSS/SSS/PBCH/PDCCH/PDSCH/DMRS
— UL cellshaping and UL SU-MIMO with 2 layers
— PRACH/PUCCH/PUSCH
— Up to 2 layers codebook-based beamforming for DL SU-MIMO.
— DL codebook-based beamforming
— CSI-RS configurations and CSI reports
f[GHz]
37 40
100MHz 100MHz 100MHz 100MHz
Beam 1 Beam 3 Beam 5 Beam 7
Beam 2 Beam 4 Beam 6 Beam 8
The Massive MIMO High-Band feature supports the
PRODUCT_DEFAULT coverage shape only.
Whybeammanagement?
High band,analog beamforming
— Analog beamforming listens or sends in one
directionat the time
— Thereforeonly feasible to span selected
directionsof thechannel  One will needto
rely on a limitednumber of beams.
Low / Mid band,digital beamforming
— Digital beamforming makes itfeasible to
estimate the entire channel by transmitting
CSI-RS
— Data can be transmitted witha narrow beam
given the estimated channel.
RS
Beammanagement
— P1: Initial TX beam sweep (Beam establishment):
SSB (PSS/SSS/PBCH block) beam sweep and access through
PRACH In this phase wide-beam is used
— P2: TX beam sweep for refinement &tracking:
CSI-RS narrow-beam sweep for TX refinement (from wide to
narrow) and for TX tracking (narrow to narrow)
— P3: UE RX Beam sweep for refinement &tracking:
CSI-RS narrow-beam sweep for RX refinement (from wide to
narrow) and for RX tracking (narrow to narrow)
Assuming the UE use both wide &narrow beams
“P1 procedure”
“P2 procedure”
“P3 procedure”
• SSB consists of PSS, SSS, and PBCH
• Numerology of SSB depends on frequency band
• UE performs matched filtering to find PSS
• 3 PSS as in LTE
• UE detects in frequency-domain SSS
• PSS and SSS together indicate physical Cell ID (in total
3∙336 = 1008 physical Cell IDs)
SS Block (SSB)
127
SC
frequency
symbols
PBCH
PBCH
PSS
PBCH
SSS
PBCH
12
PRB
20
PRB
Up to L SSB in 5 ms slots
20 ms SSB periodicity for IA
Example of 120 kHz slots
• L SSB can be beamformed in different directions
• L depends on frequency range
NR-SS block details – simplified example
5 ms window
1 ms
15 kHz SCS with L=4
30 kHz SCS with L=4
240 kHz SCS with L=64
30 kHz SCS with L=8
0.125 ms
120 kHz SCS with L=64
1
2
3
4
5
6
7
8
9
10
11
12
13
14
SS Block SS Block
15 kHz SCS with L=8
0.5 ms
Note: The above figure shows where the SSB are transmitted within 5 ms window. The value of L is the maximum
number of SSBs that can be transmitted. If the gNB transmits lesser number of SSBs in a SS burst, then it can use
only subset of the resources allocated for SSB transmission
Beammanagement
Simpleexample
P2: gNB refine to narrow-beam
P3: UE refine it’s beams
P1: establish in wide-beam
Content
• 5G overview and NR Architecture evolution.
• NR spectrum | deployment options | NSA architecture | NSA bearers | ENDC configuration | VoLTE in NSA | SA architecture
| Virtual RAN | ESS | ORAN
• NR key techniques.
• Numerology | Waveform | time and frequency structure | frame structure | TDD pattern | Ultra lean design
• NR mobility corresponding features
• Mobility in NSA | Anchor Control Strategies & Solutions | associated mobility features.
• M-MIMO in NR
• M-MIMO & AAS overview | analog and digital beamforming | beam management.
• NR hardware product portfolio.
• AIR overview | AIR used in NR | classical radio in NR | BB in NR
• NR call flow
• NSA call flow
• NR performance management.
• NR performance monitoring | KPI & counter monitoring in 5G
EricssonRadioSystemportfolio
Comprehensive
Radio Portfolio
AT&T
T-Mobile
Sprint
Verizon
U.S. Cellular
5GRAN– inMANA
mmWave,midband&lowbandradios&Baseband
AIR 5121
● 28GHz
AIR 5331
● 39GHz
Street Macro 6701
● B257 (26.5–29.5 GHz); B260 (37–40 GHz)
AIR 1281
● B257 (26.5–29.5 GHz); B260 (37–40 GHz)
AIR 5322
● Band 257 (26.5 – 29.5 GHz)
●AIR 6488
●AIR 6449
● 2.5GHz
4449/4478
● B71 – 600MHz
● B5 – 850MHz
●BB 6630
●BB 6648
Source - March 2020; MANA Network Evolution
High band mmW product
Ericsson2018-2021High-bandproductportfolio
AIR 1281
AIR 5121 AIR 5322
AIR 5331
Spectrum B261 B260 B260/B261/B258 B260/B261/B258 B260/B261
IBW 850MHz 3GHz 3GHz 3GHz 3GHz
OBW 400MHz 800MHz 400/800MHz 400/800MHz 400/800MHz
EIRP 55dBm 60dBm 62/59dBm 56/53dBm 56/53dBm
Cooling Passive Passive Active Passive Active
Dimension (liter) 16 20 6 7 13
Installation Type Pole/Wall Rooftop/Pole/Wall Rooftop/Pole/Wall Pole/Wall/Strand Pole/Wall
Power AC/DC AC/DC AC/DC AC/DC AC
Ericsson CPRI /TN 1-2x10G 1-4x10G 1-2x25G, 1-4x10G 1-2x25G, 1-4x10G 1-2x10G TN
SM6701
n258 24 GHz
n261/n257 28 GHz
n260 39 GHz
G1 G2
G1 G2 G2
Available /Planned for 2020
Street Macro 6701 AIR 1281
Compact
Low weight & size
with or without integrated
baseband
AIR 7 liter, 8 kg
Street macro 13 liter,
13 kg
Smaller size
and lower weight
Lower transport
requirements
General
Size/weight
optimization
Fronthaul evolution
Support for all 3GPP
bands
Higher output power
Higher uplink
performance
Compact and energy
efficient design
Integrated
baseband
High-bandportfolio&evolution
Evolution
Segments
Capacity
High EIRP, many beams
Up to 62dBm EIRP
AIR 5322
AIR 5331
B260 62dBm EIRP
AIR 5322&
1281PAAM
AIR 5121&
5331PAAM
SM 6701
StreetMacro High Band
base station
●Fully integrated base
station
●Small form factor radio for
poleand wall deployment
Streetmacro 6701
●High Band (mmWave)
●800 MHz TCBW
●EIRP: ~55 dBm
●Volume: 13 L
Weight: 14 kg
High Band 5G deployment solution for streetand open indoor,
forspeedand capacity
5G bootcamp Sep 2020 (NPI initiative).pptx
AIR 1281
General
RF band support Band 257, 258B, 261, 260, 258
OOB Spurious Emission
Max total EIRP
TCBW
IBW
FCC and 3GPP compliant
53/56 dBm
800/400 MHz
Fullband
Interface
Fronthaul IF
Power Supply
Typ.Power Consumption
C1 CPRI, 10 and 25Gbps
100-250VAC, -48VDC
< 125 W
Mechanical
Installation type
Dimensions
Weight
Operating temperature
IP Class
Pole/Wall/Strand mounted
279x200x130
7.5kg
-40°C to+55°C
IP65
AIR1281AntennaInformation
● 1 Antenna Module (PAAM)
● 4x24 subarrays where each subarray
contains 2x1 dual-polarized antenna elements
● Total 384 antenna elements
● Max bandwidth/beam:
● 400MHz (4 x 100 MHz CC)
● Polarization: Hpol/Vpol
Config Mode 2:
— Fullarray,4x24 subarrays
— Can generate2 beams, one foreachpolarization
— Total CarrierBandwidth: 400MHz (Max occupied bandwidth),
400MHz/beam/polarization
Config Mode 1:
— Half array,2x24 subarrays
— Can generate 4 beams,one foreachpolarization and arrayhalf
— Total CarrierBandwidth: 800MHz (Max occupied bandwidth),
400MHz/beam/polarization
General
RF band support
OOB Spurious Emission
Total EIRP
TCBW
IBW
Band 257, 258B, 261, 260, 258
FCC and 3GPP compliant
62/59 dBm
800/400 MHz
Fullband
Interface
Fronthaul IF
Power Supply
Typ. Power Consumption
C1 CPRI, 10 and 25Gbps
100-250VAC, -48VDC
< 190 W
Mechanical
Installation type
Dimensions
Weight
Operating temperature
Cooling
IP Class
Rooftop/Pole/Wall
279x200x110
7.5kg
-40°C to +55°C
Active
IP65
AIR 5322
AIR5322AntennaInformation
● 1 Antenna Module (PAAM)
● 8x24 subarrays where each subarray
contains 2x1 dual-polarized antenna elements
● Total 768 antenna elements
● Max bandwidth/beam:
● 400MHz
● Polarization: Hpol/Vpol Config Mode 2:
— Fullarray,8x24 subarrays
— Can generate2 beams, one foreachpolarization
— Total CarrierBandwidth: 400MHz (Max occupied bandwidth),
400MHz/beam/polarization
Config Mode 1:
— Half array,4x24 subarrays
— Can generate 4 beams, one foreachpolarization and arrayhalf
— Total CarrierBandwidth: 800MHz (Max occupied bandwidth),
400MHz/beam/polarization
Config Mode 0:
— 1/4th array,2x24 subarrays
— Can generate8 beams, one foreachpolarization
— Total CarrierBandwidth: 800MHz (Max occupied bandwidth),
200MHz/beam/polarization
5G bootcamp Sep 2020 (NPI initiative).pptx
5G bootcamp Sep 2020 (NPI initiative).pptx
4
rows
24 columns
192 TRX AAS
High band (AIR 5331)
Antenna Branches
Antenna Matrix (row x col)
Weight
768T768R
4 x 24, (2x1 subarray)
14 kg
M-MIMOSegmentation
TDD
AIR6488
Max performance
High EIRP/Tx Power
Min 200W Tx power
64 and 32 Tx/Rx
Variants
AIR3239
AIR3236
AIR6449
AIR3227 AIR3228
Size optimized
Low-footprint segment
<25 kg
Up to 200W
Variants
AIR 32Tx, 16Tx
100W
100MHz
20Kg
200W
200MHz
<25 Kg
AIR3278
200W
300MHz
<25 Kg
200W
100MHz
320W
200MHz
260W
Dual-band
~25 Kg (tough)
AIR6419
min 320W
min 200MHz
320W
200MHz
32Tx
(reduce cost)
Background
— Introduction of NR brings new bands overlapping existing bands
— Need for align message on how toname band per products
Naming rules
— Call all band names “B”regardless of the 3GPP NR-band designation
“n”
— To not have two versions of one band, ex.B41 and n41
— The band name in the product name willmainly designate the
frequency range of the product,not theRAT support
— Need tocross check with SW availabily
— Call LTE + NR productsby theLTE name B42(subband) or
B43(subband)
— Call NR-only productsby theNR band B78(subband)
— Use B78 tosave subband names within B77
— Bands included in 3GPP NR band list willremain thesame regardless
of RAT support (LTE and/or NR)
— Ex B41 and B38
Namingrulesforradioproductsregarding
differentband
— Advanced Antenna System (AAS)
— 64TX/64RX with 128 AE (B42 with 192 AE)
— Up to200W
— EIRP 75 dBm (band depended)
— Support up to 100 MHz IBW &CBW
— Support NR and LTE (band depended)
— Max total carrierBW is 100MHz for NR, or 60MHz for LTE
— 3 x 10 Gbps eCPRI
— Weight: ~45 kg (band depended)
— Size (H x W x D): ~ 800 x 400 x 150 mm (band depended)
— -48 VDC (3-wire or 2-wire)
— -40 ̊C to +55 ̊C
— Support number of layers: DL/UL 16/8
AIR 6488
See more details in:
• Product Information, AIR 6488
Key Characteristics
AIR 6488
Supported
Standards
EIRP
(dBm)
Antenna
Elements
Output
Power (W)
IBW
(MHz)
B42F NR 74 128 200 100
B43 NR 72 128 200 100
B41
NR & LTE+NR
Split Mode
72 128 200 100
B42G NR 74 128 200 100
B78H NR 74 128 200 100
B42 NR 76 192 200 100
Dimension
(HxWxD
mm)
Dimension
(HxWxD mm)
without protruding
Weight without
Mounting Kit (kg)
B42F 810x400x200 43.5
B43 810x400x200 43.5
B41 884x520x183 58
B42G 810x400x200 43.5
B78H 810x400x200 43.5
B42 810x400x219 47
AIR 6488
Product Frequency (MHz) PRT PRA N1 GAN1
SW
AIR 6488 B78B 3500-3600 NA NA NA NA
AIR 6488 B42F 3420-3600 Passed
PRA1: Passed
PRA2: Passed
PRA3: Passed
PRA4: Passed
PRA5: Passed
PRA6: Passed
Passed
19.Q1
19.Q2
19.Q2
19.Q3
19.Q4
20.Q2
AIR 6488 B43 3600-3800 Passed
PRA1: Passed
PRA2: Passed
PRA3: Passed
PRA4: Passed
PRA5: Passed
PRA6: Passed
PRA7: Oct-2020
Passed
19.Q1
19.Q2
19.Q2
19.Q4
20.Q2
20.Q3
20.Q4
AIR 6488 B41 2496-2690 Passed
PRA1: Passed
PRA2: Passed
PRA3: Passed
PRA4: Passed
PRA5: Passed
PRA6: Passed
PRA6: Passed
Passed
19.Q1
19.Q2
19.Q3
19.Q4
20.Q1
20.Q2
20.Q3
AIR 6488 B42 3400-3600 Passed
PRA1: Passed
PRA2: Passed
PRA3: Passed
PRA4: Passed
PRA5: Passed
PRA6: Passed
PRA7: Oct-2020
Passed
19.Q2
19.Q2
19.Q3
19.Q4
20.Q2
20.Q3
20.Q4
AIR 6488
Product Frequency (MHz) PRT PRA N1 GAN1 SW
AIR 6488 B42G 3410-3600 Passed
PRA1: Passed
PRA2: Passed
PRA3: Passed
PRA4: Passed
Passed
19.Q1
19.Q2
19.Q3
20.Q2
AIR 6488 B78H 3542-3700 Passed
PRA1: Passed
PRA2: Passed
PRA3: Passed
PRA4: Passed
Passed
19.Q1
19.Q2
19.Q3
20.Q3
AIR 6488 B41K 2515-2675 Passed
PRA1: Passed
PRA2: Passed
PRA3: Passed
LA, Passed
19.Q1
19.Q2
19.Q4
AIR 6488 B41M 2590-2690 Passed
PRA1: Passed
PRA2: Passed
LA, Passed
19.Q2
19.Q4
AIR 6488 B41N 2545-2595 NA Passed LA, Passed 19.Q4
AIR 6488 B42 JPN 3400-3600 NA
PRA1: Passed
PRA2: Passed
LA, Passed
19.Q4
20.Q2
AIR 6488 B48 3550-3700 Passed
PRA1: Passed
PRA2: Passed
Passed
19.Q4
19.Q4
• N(note)1: see more details in Product Information, AIR 6488
— 64TX/64RX with 128 AE
— Up to120W
— EIRP max 72dBm
— Up to 60 MHz IBW
— Up to 3 carriers LTE
— 2 x 10 Gbps eCPRI
— Weight: ~ 60 kg (band depended)
— Size (H x W x D): ~ 973 x 520 x 183 mm (band-depended)
— -48 VDC (2-wire)
— -40 ̊C to +55 ̊C
— Support number of layers: DL/UL 12/6
AIR 6468
See more details in:
• Product Information, AIR 6468
AIR 6468
Product Frequency (MHz) PRT PRA (LTE only) GA(LTE only) SW
AIR 6468 B41E 2575-2635 Passed Passed LA, Passed 5G Plug-Ins 17.Q4
AIR 6468 B42 3400-3600 Passed Passed Passed
AIR 6468 B41 2496-2690 Passed Passed Passed
AIR 6468 B40 2300-2400 Passed Passed Passed
AIR 6468 B38A 2575-2615 Passed Passed Passed
AIR 6468 B41C 2535-2655 Passed Passed LA, Passed MTR 19.03
— Advanced Antenna System (AAS)
— 32TX/RX with 128 AE
— 100W total output power
— EIRP 72 dBm (band depended)
— 100 MHz IBW
— Up to 3 carriers NR orLTE
— Max total carrierBW is 100MHz for NR, or 60MHz for LTE
— 3 x10 Gbps eCPRI (1x25 Gbps eCPRI HW prepared)
— Weight: ~ 20 kg (band depended)
— Size (H x W x D): ~ 530 x 411 x 122 mm (band depended)
— -48 VDC 3-wire (possible to connect as 2-wire)
— -40 to +55 ̊C
— Support number of layers: DL/UL 12/6
AIR 3239
See more details in:
• Product Information, AIR 3239
AIR 3239
Product Frequency (MHz) PRT PRA (Note) GA SW
AIR 3239 B78C 3500-3700 Passed PRA1: Passed
PRA2: Passed
PRA3: Passed
Passed 19.Q2 IP2
19.Q2 IP2
20.Q1
AIR 3239 B78G 3600-3800 Passed PRA1: Passed
PRA2: Passed
PRA3: Passed
Passed 19.Q3 IP1
20.Q2
20.Q2
AIR 3239 B77B 3800-4000 Passed PRA: Passed Passed 19.Q4
AIR 3239 B78F 3420-3600 Passed PRA1: Passed
PRA2: Passed
Passed 19.Q4
20.Q2
AIR 3239 B40 2300-2400 Passed PRA1: Passed
PRA2: Passed
PRA3: Passed
PRA4: Dec-2020
Passed 20.Q1
20.Q1
20.Q2
20.Q4
AIR 3239 B40 AU 2300-2400 NA PRA: Passed NA 20.Q3
AIR 3239 B78Q 3300-3500 Passed PRA: Passed Passed 20.Q2.IP3
• Note: see more details in Product Information, AIR 3239
— Advanced Antenna System (AAS)
— 64TX/64RX with 192 AE
— Up to 320W(band dependent)
— EIRP up to 79 dBm(band dependent)
— Up to 200 MHz IBW &CBW
— Max total carrier BW is 200MHz for NR, or 100MHz for LTE
— 4 x 25 Gbps eCPRI
— Weight: 37 - 47 kg (band dependent)
— Size (H x W x D): Band depended
— -48 VDC (3-wire or 2-wire)
— -40 to +55 ̊C
— Support number of layers: DL/UL 16/8
AIR 6449
See more details in
• Product Information, AIR 6449
AIR 6449
Product Frequency (MHz) PRT PRA GA SW
AIR 6449 B41K 2515-2675 Passed Passed Q3-2020 20.Q2
AIR 6449 B41 2496-2690 Passed Passed Q3-2020 20.Q3
AIR 6449 B42 3400-3600 Passed Passed Q3-2020 20.Q3
AIR 6449 B43 3600-3800 Passed Q3-2020 Q4-2020 20.Q4
AIR 6449 B78M 3450-3650 Passed Q4-2020 Q1-2021 20.Q4
AIR 6449 B77D 3700-3980 Oct-2020 Jan-2021 Mar-2021 20.Q4
AIR 6449 B78W 3300-3580 Q1-2021 Q2-2021 Q3-2021 21.Q2
AIR 6449 B79A 4800-5000 Q1-2021 Q2-2021 Q3-2021 21.Q2
See more details in
• Product Information, AIR 6449
AIR 3236
See more details in
• Product Information, AIR 3236
— 32TX/RX with 192 AE
— 320W total output power
— EIRP ~79 dBm
— 200 MHz IBW &CBW
— 2 x25 (compatible to 10G) Gbps eCPRI SFP28
— Weight:27~36 kg (band depended)
— Size: ~ 841H x 522W x 211D mm (band depended)
— Natural convection cooling
— -48 VDC 2-wire
— -40 to +55 ̊C
— With RET
— M-MIMO layer:16DL/8UL
AIR 3236
See more details in Product Information, AIR 3236
Frequency PRT LA GA SW
B41K Released Released 2020-Oct 20.Q3
B42 Released 2020-Sep 2020-Dec 20.Q4
B41 2021-Mar 2021-May 2021-Aug 21.Q2
— Advanced Antenna System (AAS)
— 32TX/RX with 128AE
— 200W total output power
— EIRP 76 dBm
— 200 MHz IBW&CBW
— 2 x25 Gbps (compatible to 10G) eCPRI SFP28
— Weight: < 25 kg (band depended)
— Size (H x W x D): band depended
— -48 VDC 3-wire (possible to connect as 2-wire)
— -40 to +55 ̊C
— Support number of layers: DL/UL 16/8
AIR 3227
See more details in
• Product Information, AIR 3227
AIR 3227
Product Frequency (MHz) PRT PRA * GA SW
AIR 3227 B43 3600-3800 Passed PRA1: Passed
PRA2: Nov-2020
Jan-2021 20.Q3.IP1
TBD
AIR 3227 B42 AS 3400-3600 Passed Oct-2020 Feb-2021 20.Q3.IP1
AIR 3227 B78T 3410-3610 Passed Dec-2020 Mar-2021 21.Q1
*: See more details in Product Information, AIR 3227
— Advanced Antenna System (AAS)
— 32TX/RX with 128 AE
— 200W total output power
— EIRP 76 dBm
— 300 MHz IBW
— 200 MHz OBW(CBW)
— 2x 25 Gbps (compatible to 10G) eCPRI SFP28
— Weight: ~27.5 kg (band dependent)
— Size (H x W x D): ~ 621 x 370 x 185 mm
— Natural convection cooling
— -48 VDC 3-wire (possible to connect as 2-wire)
AIR 3278
See more details in
• Product Information, AIR 3278
AIR 3278
Product Frequency (MHz) PRT PRA GA SW
AIR 3278 B78K 3420-3800 Passed PRA1: Dec-2020
PRA2: Q1-2021
Mar-2021 20.Q4
TBD
See more details in Product Information, AIR 3278
— Dual-Band Advanced Antenna System (AAS)
— B38A (2575 - 2615MHz) and B78R (3420-3650 MHz)
— 32TX/RX with 128 AE per band
— 240W total output power
— B38A up to 80W
— B78R up to 160 W
— IBW: Up to 200MHz per band
— OBW (CBW): Up to 200MHz in total
— B38A up to 40MHz LTE or NR
— B78R up to 200MHz NR
— 4x 25Gbps (compatible to 10G) eCPRI SFP28
— Size (H x W x D): ~ 841 x 524 x 220 mm
— Weight: <50 kg (band dependent)
— Natural convection cooling
— -48 VDC 3-wire (possible to connect as 2-wire)
— CEPT compliance for both bands
AIR 3228
See more details in
• Product Information, AIR 3228
AIR 3228
Product Frequency (MHz) PRT PRA GA SW
AIR 3228 B38A+B78R B38A: 2575-2615
B78R: 3420-3650
Oct-2020 Dec-2020 Mar-2021 20.Q4
See more details in Product Information, AIR 3228
InterleavedAIR 3237
— Interleaved AIR. Active/Passive AAS
— 32TX/RX with 128 AE
— 200W total output power
— EIRP 76 dBm
— 300 MHz IBW
— 200 MHz OBW(CBW)
— 2x 25 Gbps (compatible to 10G) eCPRI SFP28
— Natural convection cooling
— Weight: ~85 Kg excluding Mounting clamps (band
dependent)
— Size (H x W x D): ~ 2097 x 448 x 328 mm
— -48 VDC
— Passive port configuration
— 4 Low band,698 – 960 MHz, 2m class gain
— 4 High band,14xx – 2200 MHz, 1,3m class gain
— 4 High band,2490 – 2690 MHz, 1,3m class gain
— Individual RET
InterleavedAIR 3237
Product Frequency (MHz) PRT PRA GA SW
AIR 3237 B78K 2LBp 4HBp 2m 3420-3800 Q1-2021 TBD Q3-2021 TBD
NR Deployment across the Network
Traffic
Capacity
per
Site
Massive
MIMO
mm
Wave
100%
Classic Low Band
Classic Low Band
AAS 64T
Mid Band
2T Radio 4T Radio 8T Radio Multi-band
Radio
mmWave AA
ES
xtreme
capacity
Capacity
Massive MIMO A
B
AS
oost
High Capacity <--------------------------------> Coverage
Low Band Classic Radios
The ERS portfolio is HW prepared for NR
RAN Compute HW/Basebands
Sites
Radio Dot 4479 and IRU 8884
› Non-intrusive easy-installable Radio Dot
› Easy installation with standard LAN cable
› Centralized baseband with macro network functional parity
Distributed Indoor Coverage for 5G
DOT 4479
› 5G indoor with 4x4 MIMO in small formfactor for ceiling or wall
mounting
5G indoor performance in mid bands (3
- 6 GHz)
OPERATOR
CHALLENGE
› Aggregation of up to 8 radio dots
› Feed Radio Dots with signal and power over LAN cable
IRU 8884
Dot
4479
IRU
8884
Dot 4479
• Antenna Matrix
• IBW
• Band
• Output Power
• Type of cooling
• Dimensions
• Weight
• Color
• Mounting
4x4 MIMO
100 MHz
B42 & additional bands
4 x 24dBm (4x250mW)
Passive
~200 mm diameter
< 800 g
Off-white
Flush mount wall or celling
IRU 8884
• Fan out
• Front haul
• Power
• Mounting
8 Dot 4479 multiplexed
10Gbps SFP/SFP CPRI
-48V DC or AC
19” rack 1U
Dot 4479, IRU 8884
Preliminary data
NR NSA RDS Architecture
RDI
CAT 6A cable
Indoor Radio Unit
Baseband to radio connection
Electrical or fiber
Baseband
(6630)
Core network
Radio Dot Dot 2272
(LTE)
Dot 4479
(NR)
IRU 88x4 (LTE)
IRU 8846 (NR)
NSANRArchitectureforRDS
ENM
BB6630
gNB
IRU
8846
Master eNodeB
(MN)
eUTRAN– NRDualConnectivity(EN-DC)
Secondary gNodeB
(SN)
CPRI
IRU
88x4
4G & 5G
Control traffic
10.1G CPRI C1
BB6630
eNB
5G
EPC
Dot 4479
NR
Dot 2272
LTE
Uu
Non-EN-DC configured user traffic
EN-DC configured user traffic
Control Plane
EN-DC traffic
(poor quality)
X2
AccessNodeRequirements
The access side requires the use of specific Basebands, Indoor Radio Units and Radio Dots for the LTE side and the
NR siderespectively.
NR side
LTE side
— BB 5212
— BB 5216
— BB 6318
— BB 6620
— BB 6630
— BB 6630
The Basebands should be chosen depending on
the bandwidth required and the connectivity
chosen for the deployment
NR side
IRU Radio Dot
— IRU 8846 — Dot 4479
LTE side
IRU Radio Dot
— IRU 2242 — RD 2243
— RD 4442
— IRU 8844
— IRU 8884
— Dot 2272
The Indoor Radio Units should be chosen depending on the
type of Radio Dot used
ReleasedRANCompute– NRHWcapacity
Baseband 6630 & 6318
— Max NR Throughput:
5Gbps/1Gbps
— eCPRI (mid-band) Radio support:
3 sectors 100 MHz, 16/8 layers
— High band support: 1 sectors,
800MHz, 2 layers
— Low Band support: 24 carriers,
20MHz, 4T4R
Baseband 5216
— Max NR Throughput: 3Gbps/0.7Gbps
— Low Band Support: 12 carriers,
20MHz, 4T4R
Baseband 6620, 5212, 6303 & 6502
— Max NR Throughput:
1Gbps/0,4Gbps
— Low band support:
6 carriers, 20MHz, 4T4R
Standard capacity
High capacity
NewRANComputeproducts– NRHWcapacity
Standard capacity
High capacity
Indoor
Outdoor
Baseband 6648
— Max Throughput: 10-15Gbps/3Gbps
— eCPRI support: 3 sector carriers 200MHz, 16/8 layers
or 6 sector carriers 100MHz, 16/8 layers
— High band support: 3 sector carriers, 800MHz, 2 layers
— Low-band support: 48 sector carriers, 20MHz, 4T4R
— Mid-band non-AAS support: 6 sector carriers, 100MHz, 8T8R
Radio Processor 6347
— Max Throughput: 10-15Gbps/3Gbps
— eCPRI support: 3 sector carriers 200MHz, 16/8 layers
or 6 sectors 100MHz, 16/8 layers
— High band support: 3 sector carriers, 800MHz, 2 layers
Low-band support: 48 sector carriers, 20MHz, 4T4R
— Mid-band non-AAS support: 6 sectorcarriers, 100MHz, 8T8R
Baseband 6641
— Max Throughput: 5-7Gbps DL /2Gbps UL
— eCPRI support: 3 sector carriers 100MHz, 16/8 layers
— High band support: 3 sectorcarriers, 400MHz, 2 layers
— Low-band support: 24 sectorcarriers, 20MHz, 4T4R
— Mid-band non-AAS support: 3 sectorcarriers, 100MHz, 8T8R
Radio Processor 6337
— Max Throughput: 5-7Gbps DL /2Gbps UL
— eCPRI support: 3 sector carriers 100MHz, 16/8 layers
— High band support: 3 sectorcarriers, 400MHz, 2 layers
— Low-band support: 24 sectorcarriers, 20MHz, 4T4R
— Mid-band non-AAS support: 3 sectorcarriers, 100MHz, 8T8R
— The NR NSA may be deployed on thefollowing Baseband units:
— eNB: Baseband 5216 /5212 /6630 /6620
— gNB: Baseband 6630
SupportedBasebandHW
5G bootcamp Sep 2020 (NPI initiative).pptx
Content
• 5G overview and NR Architecture evolution.
• NR spectrum | deployment options | NSA architecture | NSA bearers | ENDC configuration | VoLTE in NSA | SA architecture
| Virtual RAN | ESS | ORAN
• NR key techniques.
• Numerology | Waveform | time and frequency structure | frame structure | TDD pattern | Ultra lean design
• NR mobility corresponding features
• Mobility in NSA | Anchor Control Strategies & Solutions | associated mobility features.
• M-MIMO in NR
• M-MIMO & AAS overview | analog and digital beamforming | beam management.
• NR hardware product portfolio.
• AIR overview | AIR used in NR | classical radio in NR | BB in NR
• NR call flow
• NSA call flow
• NR performance management.
• NR performance monitoring | KPI & counter monitoring in 5G
UE eNB gNB MME S-GW P-GW
RACH msg 1 /2/3
RRC conn request
RRC conn setup
RRC setup complete
[NAS attach request]
SIB2
S1 AP : initial UE message
attach request (DCNR)
UE eNB gNB MME S-GW P-GW
Initial Context Setup Request
Attach accept
UE Capability Enquiry
UE Capability Information
Authentication procedure
Security mode procedure
UE eNB gNB MME S-GW P-GW
UE Capability Enquiry
UE Capability Info Indication
Security mode procedure
RRC Connection Reconfiguration
UE Capability Information
UE eNB gNB MME S-GW P-GW
Initial Context Setup
Response
RRC Connection
Reconfiguration Complete
Uplink NAS Transport
[Attach Complete]
[Activate Default Bearer Accept]
Measurement Report
SgNB Addition Request
UE eNB gNB MME S-GW P-GW
RRC Connection
Reconfiguration Complete
S1AP E-RAB Modification
Indication
SgNB Addition Request
Acknowledge
RRC Connection Reconfiguration
SgNB Reconfiguration
Complete
S1AP E-RAB Modification
Confirmation
UE eNB gNB MME S-GW P-GW
NR RACH Preamble (Msg1)
NR PSS
NR SSS
NR PBCH [MIB]
NR PUSCH RA Response (Msg2)
Data flow over 5G
Msg3
NRLegSetup
eNBtogNBrelocation,ULinLTE
UE SgNB
MeNB SGW MME
UL/DL User data in LTE
Prepare for DRB reconfiguration
X2: SgNB Addition Request (RRC: CG-ConfigInfo)
Allocate PDCP and SCG resources.
X2: SgNB Addition Request Acknowledge (RRC: CG-Config)
Suspend DRB
X2: SN Status Transfer
RRC Reconfiguration (“Add SCG” stop B1)
LTE Random Access
X2: SgNB Reconfiguration Complete
UL User data in LTE (new ciphering key)
RRC Reconfiguration Complete
NR Random Access
S1-AP: E-RAB Modification Indication
S1-AP: E-RAB Modification Confirm
Bearer
Modification
Prepared for UL data
Resume DRB
End marker packet
New path
LTE PDCP NR PDCP
LTE RLC NR RLC
LTE MAC NR MAC
SGW
S1-U
S1-U
X2-U
LTE RLC
LTE MAC
RA RA
MeNB SgNB
DL User data in NR (new ciphering)
User-plane
RRC: B1 Measurement Report indicating that it has NR coverage
MN terminated
MCG DRB
SN terminated
Split DRB
NR Leg Setup
gNB allocate resources for PDCP and lower layer
UL data stops
UL flow from eNB to gNB
new msg and required support in MME
DL flow from gNB
NRLegReleaseOverview
— MeNB initiatedNR Leg Release triggered at:
— UE detectedRLF
— Failed random access
— RLC UL delivery failure
— Out of synchronization
— SgNB initiatedNR Leg Release triggered at:
— gNB detectedRLF
— RLC DL delivery failure
— NR celllock
UE MeNB SgNB EPC
NR Leg Release (gNB to eNB relocation) +
Start B1 measurement
SCG Failure Indication NR
MeNB initiated NR Leg Release
RLF, NR Cell Lock
SgNB initiated NR Leg
Release
RLF, suspend SCG
MN terminated
MCG DRB
SN terminated
Split DRB
NR Leg Release
MeNB-initiatedNRLegRelease
gNB to eNBRelocation,ULinLTE
UE SgNB
MeNB SGW MME
E-RAB Modification Confirm
Bearer
Modification
New path
UL User data in LTE
DL User data in NR
UE Context Release
Release resources
Release resources
DL User data in LTE
(new ciphering)
Resume DRB
Trigger NR Leg Release
Prepare for DRB reconfiguration
SgNB Release Request
SgNB Release Request Ack
Suspend DRB
SN Status Transfer
RRC Reconfiguration (release SCG + start B1)
LTE Random Access
UL User data in LTE (new ciphering)
RRC Reconfiguration Complete
E-RAB Modification Indication
SgNB-initiatedNRLegRelease
gNBtoeNBRelocation,ULinLTE
UE SgNB
MeNB SGW MME
Suspend DRB
SN Status Transfer
RRC Reconfiguration (release SCG + start B1)
LTE Random Access
UL User data in LTE (new ciphering)
RRC Reconfiguration Complete
E-RAB Modification Indication
E-RAB Modification Confirm
Bearer
Modification
UL User data in LTE
DL User data in NR
UE Context Release
Release resources
Release resources
DL User data in LTE
(new ciphering)
Trigger NR Leg Release
SgNB Release Required
Prepare for DRB reconfiguration
SgNB Release Confirm
Resume DRB
New path
Content
• 5G overview and NR Architecture evolution.
• NR spectrum | deployment options | NSA architecture | NSA bearers | ENDC configuration | VoLTE in NSA | SA architecture
| Virtual RAN | ESS | ORAN
• NR key techniques.
• Numerology | Waveform | time and frequency structure | frame structure | TDD pattern | Ultra lean design
• NR mobility corresponding features
• Mobility in NSA | Anchor Control Strategies & Solutions | associated mobility features.
• M-MIMO in NR
• M-MIMO & AAS overview | analog and digital beamforming | beam management.
• NR call flow
• NSA call flow
• NR hardware product portfolio.
• AIR overview | AIR used in NR | classical radio in NR | BB in NR
• NR performance management.
• NR performance monitoring | KPI & counter monitoring in 5G
NSA performance management
• Accessibility
• NR RACH SR
• ENDC Setup SR
• Retainability
• ENDC connection release from gNB
• ENDC connection release from eNB
• Mobility
• NR NSA Intra-Frequency Intra-gNodeB PSCell Change
• NR NSA Intra-Frequency Inter-gNodeB PSCell Change
• Integrity
• DL MAC Latency
• Packet Loss
• DL/UL cell Throughput
• Other important PI & KPIs
• Flex counters
NRRACH:gNB
— GNBDU.NRCellDU
— pmRadioRaCbPreambles
— pmRadioRaCbAttMsg2
— pmRadioRaCbSuccMsg3 3
1
2
3
1
2
RA SR= 100 ∗ 𝑝𝑚𝑅𝑎𝑑𝑖𝑜𝑅𝑎𝐶𝑏𝑆𝑢𝑐𝑐𝑀𝑠𝑔3
[%]
𝑝𝑚𝑅𝑎𝑑𝑖𝑜𝑅𝑎𝐶𝑏𝐴𝑡𝑡𝑀𝑠𝑔2
Counters
pmRadioRaCbPreambles
pmRadioRaCbAttMsg2
pmRadioRaCbFailMsg2Disc
pmRadioRaCbSuccMsg3
pmRadioRaCbFailMsg3Crnti
pmRadioRaCbFailMsg3Crc
pmRadioRaCbFailMsg2Disc
Incremented by one for each preamble discarded due to
Msg2 not being sent due to expiry of the random access
response window.
pmRadioRaCbFailMsg3Crc
Incremented by one for each msg3 received with wrong CRC.
pmRadioRaCbFailMsg3Crnti
Incremented by one for each msg3 received with wrong crnti.
NRRACH:gNB
ENDC setup SR
KPI Name KPI Formula
NR_ENDC_SETUP_SR 100*(pmEndcSetupUeSucc/pmEndcSetupUeAtt)
— GNBCUCP.NRCellCU
— pmEndcSetupUeAtt
— pmEndcSetupUeSucc
MME SGW MeNB SgNB UE
RRC Establishment
S1AP: INITIAL CONTEXT SETUP REQUEST()
Security and Capability RRC Signaling
DRB + SRB2 Setup RRC Signaling
S1AP: INITIAL CONTEXT SETUP RESPONSE()
X2AP: SGNB ADDITION REQUEST()
X2AP:
SGNB ADDITION
REQUEST ACKNOWLEDGE()
X2AP:
SN STATUS TRANSFER(PDCP COUNT)
RRC: RRCConnectionReconfiguration()
RRC: RRCConnectionReconfigurationComplete()
X2AP: SGNB RECONFIGURATION COMPLETE()
S1AP: E-RAB MODIFICATION INDICATION()
S1AP: E-RAB MODIFICATION CONFIRMATION()
2
1
1
2
NSA performance management
• Accessibility
• NR RACH SR
• ENDC Setup SR
• Retainability
• ENDC connection release from gNB
• ENDC connection release from eNB
• Mobility
• NR NSA Intra-Frequency Intra-gNodeB PSCell Change
• NR NSA Intra-Frequency Inter-gNodeB PSCell Change
• Integrity
• DL MAC Latency
• Packet Loss
• DL/UL cell Throughput
• Other important PI & KPIs
• Flex counters
NRLegRelease:gNB Initiated
— SgNB initiated NR Leg Release triggered at:
— gNB detected RLF
— RLC DL delivery failure
— RA Supervision timer T304 expiry
— NR celllock
— NR Celladmin state is “Locked”by Operator
— Sector carrier “Locked”or“failed”
— Lrat.EUtranCellFDD
— pmEndcRelMnMcgRelocAtt
— pmEndcRelMnMcgReallocSucc
— GNBCUCP.NRCellCU
— pmEndcRelUeAbnormalSgnb
— pmEndcRelUeAbnormalSgnbAct
UE SgNB
MeNB SGW MME
Suspend DRB
SgNB Release Confirm
SN Status Transfer ( If AM bearer is included)
RRC Reconfiguration (release SCG + start B1)
LTE Random Access
UL User data in LTE (new ciphering)
RRC Reconfiguration Complete
E-RAB Modification Indication
E-RAB Modification Confirm
Bearer
Modification
UL User data in LTE
DL User data in NR
UE Context Release
Release resources
Release SN Term Split
Bearer resource
DL User data in NR (new ciphering)
Trigger NR Leg Release
Resume DRB
1
2
1 SgNB Release Required
Prepare for DRB reconfiguration
2
3
3
KPI Name KPI Formula
SgNB_Retainability_Act_Tot
100*(pmEndcRelUeAbnormalSgnb/(pmEndcRelUeNormal+pmEndcRelUeAbnormalMenb+pmEndcRe
lUeAbnormalSgnb))
NRLegRelease:eNBInitiated
— MeNB initiated NR Leg Release triggered at:
— UE detected RLF
— Failed random access
— RLC UL delivery failure
— Out of synchronization (SSB)
— LTE handover (pmEndcRelMnMcg don’tpeg)
— Lrat.EUtranCellFDD
— pmEndcRelMnMcgRelocAtt
— pmEndcRelMnMcgReallocSucc
— GNBCUCP.NRCellCU
UE SgNB
MeNB SGW MME
Prepare for DRB reconfiguration
SgNB Release Request
Suspend DRB
SN Status Transfer( If AM bearer is included)
RRC Reconfiguration (release SCG + start B1(B1 is optional for LTE handover))
LTE Random Access
UL User data in LTE (new ciphering)
RRC Reconfiguration Complete
E-RAB Modification Indication
E-RAB Modification Confirm
Bearer
Modification
New path
UL User data in LTE
DL User data in NR
UE Context Release
Release resources
Release SN Term Split
Bearer resource
DL User data in NR (new ciphering)
Resume DRB
Trigger NR Leg Release
SgNB Release Request Ack
1
2
1
2
— pmEndcRelUeNormal (cause code: Normal)
— pmEndcRelUeAbnormalMenb (cause code: Abnormal)
— pmEndcRelUeAbnormalMenbAct (cause code: Abnormal) 3
3
UEReleasetoIDLE
— Lrat.EUtranCellFDD
— pmFlexErabRelNormalEnb
— pmFlexErabRelMme
— GNBCUCP.NRCellCU
— pmEndcRelUeNormal
MME SGW MeNB SgNB UE
X2-AP: SGNB RELEASE
REQUEST ACKNOWLEDGE()
X2-AP:
SN STATUS TRANSFER(PDCP COUNT)
X2-AP: UE CONTEXT RELEASE()
S1-AP: UE CONTEXT RELEASE COMPLETE
S1-AP: CONTEXT RELEASE REQUEST()
S1-AP: CONTEXT RELEASE COMMAND()
RRC: RRCConnectionRelease()
X2-AP: SGNB RELEASE REQUEST()
1
1
3
3
2
2
Stepped at reception of X2 Secondary gNodeB Release Request when internal cause considered normal with
precondition that EN-DC NR leg setup procedure must be completed.
NSA performance management
• Accessibility
• NR RACH SR
• ENDC Setup SR
• Retainability
• ENDC connection release from gNB
• ENDC connection release from eNB
• Mobility
• NR NSA Intra-Frequency Intra-gNodeB PSCell Change
• NR NSA Intra-Frequency Inter-gNodeB PSCell Change
• Integrity
• DL MAC Latency
• Packet Loss
• DL/UL cell Throughput
• Other important PI & KPIs
• Flex counters
NR Intra-FrequencyHandoverfeature
NR NSA Intra-Frequency Intra-
gNodeB PSCell Change
Success rate of intra-sgNodeB Primary Secondary Cell
(PSCell) change in sgNodeB for EN-DC UE connections.
Intra-sgNodeB PSCell change in sgNodeB is measured in
X2AP: SGNB INITIATED SGNB MODIFICATION procedure
and does indicate transmission of RRC Reconfiguration
Complete from UE to master eNodeB (meNodeB).
NR NSA Intra-Frequency Inter-
gNodeB PSCell Change
Success rate of inter-sgNodeB Primary Secondary
Cell (PSCell) change in source sgNodeB for EN-DC
UE connections.
Inter-sgNodeB PSCell change in source sgNodeB is
measured in X2AP: SGNB CHANGE procedure and
does not depend on RRC Reconfiguration Complete
from UE to master eNodeB (meNodeB).
NSA performance management
• Accessibility
• NR RACH SR
• ENDC Setup SR
• Retainability
• ENDC connection release from gNB
• ENDC connection release from eNB
• Mobility
• NR NSA Intra-Frequency Intra-gNodeB PSCell Change
• NR NSA Intra-Frequency Inter-gNodeB PSCell Change
• Integrity
• DL MAC Latency
• Packet Loss
• DL/UL cell Throughput
• Other important PI & KPIs
• Flex counters
Latency
DL MAC latency measures MAC
scheduling latency from the time when
packet arrives empty DL buffer to the
time when first packet is transmitted.
DL MAC DRB Latency per QoS Covering non-DRX in-Sync DL MAC DRB Latency per QoS Covering DRX in-Sync
Packet loss
DL/UL throughput
DL MAC Cell Throughput Considering Actual
PDSCH Slot Only
UL MAC Cell Throughput Considering
Actual PUSCH Slot Only
NSA performance management
• Accessibility
• NR RACH SR
• ENDC Setup SR
• Retainability
• ENDC connection release from gNB
• ENDC connection release from eNB
• Mobility
• NR NSA Intra-Frequency Intra-gNodeB PSCell Change
• NR NSA Intra-Frequency Inter-gNodeB PSCell Change
• Integrity
• DL MAC Latency
• Packet Loss
• DL/UL cell Throughput
• Other important PI & KPIs
• Flex counters
DL/UL transport ratio
UL_QPSK_TRANSPORT_RATIO
( pmMacHarqUlAckQpsk+ pmMacHarqUlNackQpsk+ pmMacHarqUlDtxQpsk)/( pmMacHarqUlAck64Qam+
pmMacHarqUlNack64Qam+ pmMacHarqUlDtx64Qam+ pmMacHarqUlAck16Qam+ pmMacHarqUlNack16Qam+
pmMacHarqUlDtx16Qam+ pmMacHarqUlAckQpsk+ pmMacHarqUlNackQpsk+ pmMacHarqUlDtxQpsk)*100
UL_16QAM_TRANSPORT_RATIO
( pmMacHarqUlAck16Qam+ pmMacHarqUlNack16Qam+ pmMacHarqUlDtx16Qam)/( pmMacHarqUlAck64Qam+
pmMacHarqUlNack64Qam+ pmMacHarqUlDtx64Qam+ pmMacHarqUlAck16Qam+ pmMacHarqUlNack16Qam+
pmMacHarqUlDtx16Qam+ pmMacHarqUlAckQpsk+ pmMacHarqUlNackQpsk+ pmMacHarqUlDtxQpsk)*100
UL_64QAM_TRANSPORT_RATIO
( pmMacHarqUlAck64Qam+ pmMacHarqUlNack64Qam+ pmMacHarqUlDtx64Qam)/( pmMacHarqUlAck64Qam+
pmMacHarqUlNack64Qam+ pmMacHarqUlDtx64Qam+ pmMacHarqUlAck16Qam+ pmMacHarqUlNack16Qam+
pmMacHarqUlDtx16Qam+ pmMacHarqUlAckQpsk+ pmMacHarqUlNackQpsk+ pmMacHarqUlDtxQpsk)*100
DL_QPSK_TRANSPORT_RATIO
( pmMacHarqDlAckQpsk+ pmMacHarqDlNackQpsk+ pmMacHarqDlDtxQpsk)/( pmMacHarqDlAck256Qam+
pmMacHarqDlNack256Qam+ pmMacHarqDlDtx256Qam+ pmMacHarqDlAck64Qam+ pmMacHarqDlNack64Qam+
pmMacHarqDlDtx64Qam+ pmMacHarqDlAck16Qam+ pmMacHarqDlNack16Qam+ pmMacHarqDlDtx16Qam+
pmMacHarqDlAckQpsk+ pmMacHarqDlNackQpsk+ pmMacHarqDlDtxQpsk)*100
DL_16QAM_TRANSPORT_RATIO
( pmMacHarqDlAck16Qam+ pmMacHarqDlNack16Qam+ pmMacHarqDlDtx16Qam)/( pmMacHarqDlAck256Qam+
pmMacHarqDlNack256Qam+ pmMacHarqDlDtx256Qam+ pmMacHarqDlAck64Qam+ pmMacHarqDlNack64Qam+
pmMacHarqDlDtx64Qam+ pmMacHarqDlAck16Qam+ pmMacHarqDlNack16Qam+ pmMacHarqDlDtx16Qam+
pmMacHarqDlAckQpsk+ pmMacHarqDlNackQpsk+ pmMacHarqDlDtxQpsk)*100
DL_64QAM_TRANSPORT_RATIO
( pmMacHarqDlAck64Qam+ pmMacHarqDlNack64Qam+ pmMacHarqDlDtx64Qam)/( pmMacHarqDlAck256Qam+
pmMacHarqDlNack256Qam+ pmMacHarqDlDtx256Qam+ pmMacHarqDlAck64Qam+ pmMacHarqDlNack64Qam+
pmMacHarqDlDtx64Qam+ pmMacHarqDlAck16Qam+ pmMacHarqDlNack16Qam+ pmMacHarqDlDtx16Qam+
pmMacHarqDlAckQpsk+ pmMacHarqDlNackQpsk+ pmMacHarqDlDtxQpsk)*100
DL_256QAM_TRANSPORT_RATIO
( pmMacHarqDlAck256Qam+ pmMacHarqDlNack256Qam+ pmMacHarqDlDtx256Qam)/( pmMacHarqDlAck256Qam+
pmMacHarqDlNack256Qam+ pmMacHarqDlDtx256Qam+ pmMacHarqDlAck64Qam+ pmMacHarqDlNack64Qam+
pmMacHarqDlDtx64Qam+ pmMacHarqDlAck16Qam+ pmMacHarqDlNack16Qam+ pmMacHarqDlDtx16Qam+
pmMacHarqDlAckQpsk+ pmMacHarqDlNackQpsk+ pmMacHarqDlDtxQpsk)*100
Other important PI & KPIs
NR_DL_RLC_AR (pmRlcArqDlAck/(pmRlcArqDlAck+pmRlcArqDlNack)) * 100
NR_UL_RLC_AR (pmRlcArqUlAck/(pmRlcArqUlAck+pmRlcArqUlNack)) * 100
KPI-BLER RLC DL 100*(pmRlcArqDlNack/(pmRlcArqDlNack+pmRlcArqDlAck))
KPI-BLER RLC UL 100*(pmRlcArqUlNack/(pmRlcArqUlNack+pmRlcArqUlAck))
FlexibleCountersConcept
— Flexiblecounters are used to ensure that each operatorcan get KPIs differentiated for a configurable
set of UEs or bearers. Available in eNB since L17.A.
— The Flexible counters all have prefix“pmFlex”and are visible in MOM and PM jobs
— PmFlexCounterFilter MO is used to configure filterparameters for the Flexible counters. In L18.Q4 you
can configure 24 filtercombinations to show 24 differentvalues; one per UE/bearer selection
— In the ROP fileyou will see several instances of each Flexible counter;one for eachfiltercombination
FlexibleCountersforNRNSA;usedineNB
— A new filterparameter ENDC is defined for NR NSA, with
three (minimum) levels:
— 0 = Counter stepped if the UE is capable of EN-DC
— 1 = Counter stepped if the UE’s EN-DC capability
matches the eNB configuration (some LTE + NR
frequency band combination supported by both celland
UE)
— 2 = Counter stepped if the UE has user plane through
gNB, ieNR leg setup
— If selecting filterlevel 0,allUEs covered by level 1 and 2 are
covered as well
— If selecting filterlevel 1,allUEs covered by level 2 are
covered as well
— Filtering with level 0 can be of interest in the whole LTE
network, but level 1 and 2 are only applicable in EN-DC
configured eNBs
EN-DC
stages
Description
0 The Flex counter shows measurements for all
connected NR capable devices in the network
1 The Flex counter shows measurements for
NR capable devices where LTE capability is
matched with neighbouring gNodeB
2 The Flex counter shows measurements for
active NR leg for each NR capable device
with matched LTE and NR capability
99 The maximum value. The Flex counter don't
show any measurements as NR capable
devices are released already
Accessibility
Initial E-RAB Establishment Success Rate Captured in eNodeB
Measures accessibility success rate for end-user services that are carried by E-RABs included in Initial UE Context setup
procedure. Consists of three parts. RRC connection part and S1 signalling connection part cannot be monitored separately
for E-UTRA-NR Dual Connectivity (EN-DC) UEs.Instead, respective procedures for all LTE UEs must be used.
Retainability
E-RAB Retainability - Percentage Lost Captured in eNodeB
Reflects percentage of established E-RABs for E-UTRA-NR Dual Connectivity (EN-DC) UEs that are lost with an
abnormal release initiated by eNodeB. In this case, both LTE and NR service is lost
Integrity
DL PDCP UE Throughput Captured in eNodeB
Measures average DL PDCP throughput for
MCG radio resources monitored for E-UTRA-
NR Dual Connectivity (EN-DC) UEs
UL PDCP UE Throughput Captured in eNodeB
Measures average UL PDCP throughput for MCG
radio resources for E-UTRA-NR Dual
Connectivity (EN-DC) UEs.
ǐ1 I:« «+Q

More Related Content

Similar to 5G bootcamp Sep 2020 (NPI initiative).pptx

Lte overview titus
Lte overview titusLte overview titus
Lte overview titus
Nabil Al_Mutawakel
 
Towards Terabit per Second Optical Networking
Towards Terabit per Second Optical NetworkingTowards Terabit per Second Optical Networking
Towards Terabit per Second Optical Networking
CPqD
 
5 g nr (new radio)overview
5 g nr (new radio)overview5 g nr (new radio)overview
5 g nr (new radio)overview
Braj Kishor
 
Technologies for future mobile transport networks
Technologies for future mobile transport networksTechnologies for future mobile transport networks
Technologies for future mobile transport networks
ITU
 
aaa.pptx
aaa.pptxaaa.pptx
LTE Access Network
LTE Access Network LTE Access Network
LTE Access Network
BSP Media Group
 
LTE Features, Link Budget & Basic Principle
LTE Features, Link Budget & Basic PrincipleLTE Features, Link Budget & Basic Principle
LTE Features, Link Budget & Basic Principle
Md Mustafizur Rahman
 
Webinar Keysight: Soluções de Teste para Tecnologias Emergentes 5G-NR e IoT-L...
Webinar Keysight: Soluções de Teste para Tecnologias Emergentes 5G-NR e IoT-L...Webinar Keysight: Soluções de Teste para Tecnologias Emergentes 5G-NR e IoT-L...
Webinar Keysight: Soluções de Teste para Tecnologias Emergentes 5G-NR e IoT-L...
Embarcados
 
Technical Paper: 5G Standalone Architecture
Technical Paper: 5G Standalone ArchitectureTechnical Paper: 5G Standalone Architecture
Technical Paper: 5G Standalone Architecture
Massimo Talia
 
5G NR (New Radio) Training : Tonex Training
5G NR (New Radio) Training : Tonex Training5G NR (New Radio) Training : Tonex Training
5G NR (New Radio) Training : Tonex Training
Bryan Len
 
5G New Radio Technology Throughput Calculation
5G New Radio Technology  Throughput Calculation5G New Radio Technology  Throughput Calculation
5G New Radio Technology Throughput Calculation
Sukhvinder Singh Malik
 
F01 beam forming_srs
F01 beam forming_srsF01 beam forming_srs
F01 beam forming_srs
Luciano Motta
 
Positioning techniques in 3 g networks (1)
Positioning techniques in 3 g networks (1)Positioning techniques in 3 g networks (1)
Positioning techniques in 3 g networks (1)
kike2005
 
RAN - Intro, I&C & Basic Troubleshooting (3).pptx
RAN - Intro, I&C & Basic Troubleshooting (3).pptxRAN - Intro, I&C & Basic Troubleshooting (3).pptx
RAN - Intro, I&C & Basic Troubleshooting (3).pptx
Felix Franco
 
ran-introicbasictroubleshooting3-230122164831-426c58cd.pdf
ran-introicbasictroubleshooting3-230122164831-426c58cd.pdfran-introicbasictroubleshooting3-230122164831-426c58cd.pdf
ran-introicbasictroubleshooting3-230122164831-426c58cd.pdf
wafawafa52
 
5g-Air-Interface-pptx.pptx
5g-Air-Interface-pptx.pptx5g-Air-Interface-pptx.pptx
5g-Air-Interface-pptx.pptx
Murali Munagapati
 
Huawei_MIMO_solution.pdf
Huawei_MIMO_solution.pdfHuawei_MIMO_solution.pdf
Huawei_MIMO_solution.pdf
ssuser32515c
 
UMTS system architecture, protocols & processes
UMTS system architecture, protocols & processesUMTS system architecture, protocols & processes
UMTS system architecture, protocols & processes
Muxi ESL
 
5G NR: Key features and enhancements
5G NR: Key features and enhancements5G NR: Key features and enhancements
5G NR: Key features and enhancements
3G4G
 
A System's View of Metro and Regional Optical Networks
A System's View of Metro and Regional Optical NetworksA System's View of Metro and Regional Optical Networks
A System's View of Metro and Regional Optical Networks
Cedric Lam
 

Similar to 5G bootcamp Sep 2020 (NPI initiative).pptx (20)

Lte overview titus
Lte overview titusLte overview titus
Lte overview titus
 
Towards Terabit per Second Optical Networking
Towards Terabit per Second Optical NetworkingTowards Terabit per Second Optical Networking
Towards Terabit per Second Optical Networking
 
5 g nr (new radio)overview
5 g nr (new radio)overview5 g nr (new radio)overview
5 g nr (new radio)overview
 
Technologies for future mobile transport networks
Technologies for future mobile transport networksTechnologies for future mobile transport networks
Technologies for future mobile transport networks
 
aaa.pptx
aaa.pptxaaa.pptx
aaa.pptx
 
LTE Access Network
LTE Access Network LTE Access Network
LTE Access Network
 
LTE Features, Link Budget & Basic Principle
LTE Features, Link Budget & Basic PrincipleLTE Features, Link Budget & Basic Principle
LTE Features, Link Budget & Basic Principle
 
Webinar Keysight: Soluções de Teste para Tecnologias Emergentes 5G-NR e IoT-L...
Webinar Keysight: Soluções de Teste para Tecnologias Emergentes 5G-NR e IoT-L...Webinar Keysight: Soluções de Teste para Tecnologias Emergentes 5G-NR e IoT-L...
Webinar Keysight: Soluções de Teste para Tecnologias Emergentes 5G-NR e IoT-L...
 
Technical Paper: 5G Standalone Architecture
Technical Paper: 5G Standalone ArchitectureTechnical Paper: 5G Standalone Architecture
Technical Paper: 5G Standalone Architecture
 
5G NR (New Radio) Training : Tonex Training
5G NR (New Radio) Training : Tonex Training5G NR (New Radio) Training : Tonex Training
5G NR (New Radio) Training : Tonex Training
 
5G New Radio Technology Throughput Calculation
5G New Radio Technology  Throughput Calculation5G New Radio Technology  Throughput Calculation
5G New Radio Technology Throughput Calculation
 
F01 beam forming_srs
F01 beam forming_srsF01 beam forming_srs
F01 beam forming_srs
 
Positioning techniques in 3 g networks (1)
Positioning techniques in 3 g networks (1)Positioning techniques in 3 g networks (1)
Positioning techniques in 3 g networks (1)
 
RAN - Intro, I&C & Basic Troubleshooting (3).pptx
RAN - Intro, I&C & Basic Troubleshooting (3).pptxRAN - Intro, I&C & Basic Troubleshooting (3).pptx
RAN - Intro, I&C & Basic Troubleshooting (3).pptx
 
ran-introicbasictroubleshooting3-230122164831-426c58cd.pdf
ran-introicbasictroubleshooting3-230122164831-426c58cd.pdfran-introicbasictroubleshooting3-230122164831-426c58cd.pdf
ran-introicbasictroubleshooting3-230122164831-426c58cd.pdf
 
5g-Air-Interface-pptx.pptx
5g-Air-Interface-pptx.pptx5g-Air-Interface-pptx.pptx
5g-Air-Interface-pptx.pptx
 
Huawei_MIMO_solution.pdf
Huawei_MIMO_solution.pdfHuawei_MIMO_solution.pdf
Huawei_MIMO_solution.pdf
 
UMTS system architecture, protocols & processes
UMTS system architecture, protocols & processesUMTS system architecture, protocols & processes
UMTS system architecture, protocols & processes
 
5G NR: Key features and enhancements
5G NR: Key features and enhancements5G NR: Key features and enhancements
5G NR: Key features and enhancements
 
A System's View of Metro and Regional Optical Networks
A System's View of Metro and Regional Optical NetworksA System's View of Metro and Regional Optical Networks
A System's View of Metro and Regional Optical Networks
 

Recently uploaded

The Path to General-Purpose Robots - Coatue
The Path to General-Purpose Robots - CoatueThe Path to General-Purpose Robots - Coatue
The Path to General-Purpose Robots - Coatue
Razin Mustafiz
 
Feature sql server terbaru performance.pptx
Feature sql server terbaru performance.pptxFeature sql server terbaru performance.pptx
Feature sql server terbaru performance.pptx
ssuser1915fe1
 
Improving Learning Content Efficiency with Reusable Learning Content
Improving Learning Content Efficiency with Reusable Learning ContentImproving Learning Content Efficiency with Reusable Learning Content
Improving Learning Content Efficiency with Reusable Learning Content
Enterprise Knowledge
 
Types of Weaving loom machine & it's technology
Types of Weaving loom machine & it's technologyTypes of Weaving loom machine & it's technology
Types of Weaving loom machine & it's technology
ldtexsolbl
 
Sonkoloniya documentation - ONEprojukti.pdf
Sonkoloniya documentation - ONEprojukti.pdfSonkoloniya documentation - ONEprojukti.pdf
Sonkoloniya documentation - ONEprojukti.pdf
SubhamMandal40
 
It's your unstructured data: How to get your GenAI app to production (and spe...
It's your unstructured data: How to get your GenAI app to production (and spe...It's your unstructured data: How to get your GenAI app to production (and spe...
It's your unstructured data: How to get your GenAI app to production (and spe...
Zilliz
 
Vertex AI Agent Builder - GDG Alicante - Julio 2024
Vertex AI Agent Builder - GDG Alicante - Julio 2024Vertex AI Agent Builder - GDG Alicante - Julio 2024
Vertex AI Agent Builder - GDG Alicante - Julio 2024
Nicolás Lopéz
 
Redefining Cybersecurity with AI Capabilities
Redefining Cybersecurity with AI CapabilitiesRedefining Cybersecurity with AI Capabilities
Redefining Cybersecurity with AI Capabilities
Priyanka Aash
 
High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...
High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...
High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...
bhumivarma35300
 
Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery
Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery Girls call Kolkata 👀 XXXXXXXXXXX �� Rs.9.5 K Cash Payment With Room Delivery
Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery
sunilverma7884
 
Generative AI Reasoning Tech Talk - July 2024
Generative AI Reasoning Tech Talk - July 2024Generative AI Reasoning Tech Talk - July 2024
Generative AI Reasoning Tech Talk - July 2024
siddu769252
 
Using LLM Agents with Llama 3, LangGraph and Milvus
Using LLM Agents with Llama 3, LangGraph and MilvusUsing LLM Agents with Llama 3, LangGraph and Milvus
Using LLM Agents with Llama 3, LangGraph and Milvus
Zilliz
 
Gen AI: Privacy Risks of Large Language Models (LLMs)
Gen AI: Privacy Risks of Large Language Models (LLMs)Gen AI: Privacy Risks of Large Language Models (LLMs)
Gen AI: Privacy Risks of Large Language Models (LLMs)
Debmalya Biswas
 
MAKE MONEY ONLINE Unlock Your Income Potential Today.pptx
MAKE MONEY ONLINE Unlock Your Income Potential Today.pptxMAKE MONEY ONLINE Unlock Your Income Potential Today.pptx
MAKE MONEY ONLINE Unlock Your Income Potential Today.pptx
janagijoythi
 
Garbage In, Garbage Out: Why poor data curation is killing your AI models (an...
Garbage In, Garbage Out: Why poor data curation is killing your AI models (an...Garbage In, Garbage Out: Why poor data curation is killing your AI models (an...
Garbage In, Garbage Out: Why poor data curation is killing your AI models (an...
Zilliz
 
Computer HARDWARE presenattion by CWD students class 10
Computer HARDWARE presenattion by CWD students class 10Computer HARDWARE presenattion by CWD students class 10
Computer HARDWARE presenattion by CWD students class 10
ankush9927
 
BLOCKCHAIN TECHNOLOGY - Advantages and Disadvantages
BLOCKCHAIN TECHNOLOGY - Advantages and DisadvantagesBLOCKCHAIN TECHNOLOGY - Advantages and Disadvantages
BLOCKCHAIN TECHNOLOGY - Advantages and Disadvantages
SAI KAILASH R
 
Uncharted Together- Navigating AI's New Frontiers in Libraries
Uncharted Together- Navigating AI's New Frontiers in LibrariesUncharted Together- Navigating AI's New Frontiers in Libraries
Uncharted Together- Navigating AI's New Frontiers in Libraries
Brian Pichman
 
The Impact of the Internet of Things (IoT) on Smart Homes and Cities
The Impact of the Internet of Things (IoT) on Smart Homes and CitiesThe Impact of the Internet of Things (IoT) on Smart Homes and Cities
The Impact of the Internet of Things (IoT) on Smart Homes and Cities
Arpan Buwa
 
Acumatica vs. Sage Intacct _Construction_July (1).pptx
Acumatica vs. Sage Intacct _Construction_July (1).pptxAcumatica vs. Sage Intacct _Construction_July (1).pptx
Acumatica vs. Sage Intacct _Construction_July (1).pptx
BrainSell Technologies
 

Recently uploaded (20)

The Path to General-Purpose Robots - Coatue
The Path to General-Purpose Robots - CoatueThe Path to General-Purpose Robots - Coatue
The Path to General-Purpose Robots - Coatue
 
Feature sql server terbaru performance.pptx
Feature sql server terbaru performance.pptxFeature sql server terbaru performance.pptx
Feature sql server terbaru performance.pptx
 
Improving Learning Content Efficiency with Reusable Learning Content
Improving Learning Content Efficiency with Reusable Learning ContentImproving Learning Content Efficiency with Reusable Learning Content
Improving Learning Content Efficiency with Reusable Learning Content
 
Types of Weaving loom machine & it's technology
Types of Weaving loom machine & it's technologyTypes of Weaving loom machine & it's technology
Types of Weaving loom machine & it's technology
 
Sonkoloniya documentation - ONEprojukti.pdf
Sonkoloniya documentation - ONEprojukti.pdfSonkoloniya documentation - ONEprojukti.pdf
Sonkoloniya documentation - ONEprojukti.pdf
 
It's your unstructured data: How to get your GenAI app to production (and spe...
It's your unstructured data: How to get your GenAI app to production (and spe...It's your unstructured data: How to get your GenAI app to production (and spe...
It's your unstructured data: How to get your GenAI app to production (and spe...
 
Vertex AI Agent Builder - GDG Alicante - Julio 2024
Vertex AI Agent Builder - GDG Alicante - Julio 2024Vertex AI Agent Builder - GDG Alicante - Julio 2024
Vertex AI Agent Builder - GDG Alicante - Julio 2024
 
Redefining Cybersecurity with AI Capabilities
Redefining Cybersecurity with AI CapabilitiesRedefining Cybersecurity with AI Capabilities
Redefining Cybersecurity with AI Capabilities
 
High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...
High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...
High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...
 
Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery
Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery
Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery
 
Generative AI Reasoning Tech Talk - July 2024
Generative AI Reasoning Tech Talk - July 2024Generative AI Reasoning Tech Talk - July 2024
Generative AI Reasoning Tech Talk - July 2024
 
Using LLM Agents with Llama 3, LangGraph and Milvus
Using LLM Agents with Llama 3, LangGraph and MilvusUsing LLM Agents with Llama 3, LangGraph and Milvus
Using LLM Agents with Llama 3, LangGraph and Milvus
 
Gen AI: Privacy Risks of Large Language Models (LLMs)
Gen AI: Privacy Risks of Large Language Models (LLMs)Gen AI: Privacy Risks of Large Language Models (LLMs)
Gen AI: Privacy Risks of Large Language Models (LLMs)
 
MAKE MONEY ONLINE Unlock Your Income Potential Today.pptx
MAKE MONEY ONLINE Unlock Your Income Potential Today.pptxMAKE MONEY ONLINE Unlock Your Income Potential Today.pptx
MAKE MONEY ONLINE Unlock Your Income Potential Today.pptx
 
Garbage In, Garbage Out: Why poor data curation is killing your AI models (an...
Garbage In, Garbage Out: Why poor data curation is killing your AI models (an...Garbage In, Garbage Out: Why poor data curation is killing your AI models (an...
Garbage In, Garbage Out: Why poor data curation is killing your AI models (an...
 
Computer HARDWARE presenattion by CWD students class 10
Computer HARDWARE presenattion by CWD students class 10Computer HARDWARE presenattion by CWD students class 10
Computer HARDWARE presenattion by CWD students class 10
 
BLOCKCHAIN TECHNOLOGY - Advantages and Disadvantages
BLOCKCHAIN TECHNOLOGY - Advantages and DisadvantagesBLOCKCHAIN TECHNOLOGY - Advantages and Disadvantages
BLOCKCHAIN TECHNOLOGY - Advantages and Disadvantages
 
Uncharted Together- Navigating AI's New Frontiers in Libraries
Uncharted Together- Navigating AI's New Frontiers in LibrariesUncharted Together- Navigating AI's New Frontiers in Libraries
Uncharted Together- Navigating AI's New Frontiers in Libraries
 
The Impact of the Internet of Things (IoT) on Smart Homes and Cities
The Impact of the Internet of Things (IoT) on Smart Homes and CitiesThe Impact of the Internet of Things (IoT) on Smart Homes and Cities
The Impact of the Internet of Things (IoT) on Smart Homes and Cities
 
Acumatica vs. Sage Intacct _Construction_July (1).pptx
Acumatica vs. Sage Intacct _Construction_July (1).pptxAcumatica vs. Sage Intacct _Construction_July (1).pptx
Acumatica vs. Sage Intacct _Construction_July (1).pptx
 

5G bootcamp Sep 2020 (NPI initiative).pptx

  • 1. 5G Boot camp NPI initiative Saurav Sharma
  • 2. Content • 5G overview and NR Architecture evolution. • NR spectrum | deployment options | NSA architecture | NSA bearers | ENDC configuration | VoLTE in NSA | SA architecture | Virtual RAN | ESS | ORAN • NR key techniques. • Numerology | Waveform | time and frequency structure | frame structure | TDD pattern | Ultra lean design • NR mobility corresponding features • Mobility in NSA | Anchor Control Strategies & Solutions | associated mobility features. • M-MIMO in NR • M-MIMO & AAS overview | analog and digital beamforming | beam management. • NR hardware product portfolio. • AIR overview | AIR used in NR | classical radio in NR | BB in NR • NR call flow • NSA call flow • NR performance management. • NR performance monitoring | KPI & counter monitoring in 5G
  • 3. Enhanced MBB Critical MTC Fixed Wireless Access Massive MTC Why5G?
  • 4. 5Gspectrum lower bands (MHz) mid bands (MHz) higher bands (GHz) 3600 4400 4500 4800 5000 24.5 27.5 37 42.5 missing bands 6 – 24 GHz 3000 3300 52.6 450 Sub 6Ghz 3GPP FR1 Baselinecapacity layer • higher throughput • wider spectrum BW (max 100 Mhz) Suitable usecases • eMBB, FWA, URLLC millimeter wave 3GPP FR2 Extreme capacity layer • Large spectrum BW (max 400 Mhz) • high capacity &data rates • Limited coverage Suitable usecases • eMBB, FWA, URLLC (GHz) Coverage layer 3GPP FR1 • wide area coverage • deep indoor • limited by spectrum BW Suitable usecases • eMBB, Indoor, Massive IoT
  • 5. 5G spectrum MANA 600MHz, nationwide launch on Dec 2nd 850MHz, initial launch on December 12th 600MHz, initial launch on March 6th 39Ghz (BW 400MHz) 28Ghz (BW 400Mhz) 39Ghz (BW 400MHz) Planned launch in 850Mhz 28Ghz (BW 133Mhz) 39Ghz (BW 100MHz) 2.5Ghz (BW 60Mhz) H M L
  • 6. 3GPP“NR”Bands Channel Bandwidths for Each NR band : FR1 Channel Bandwidths for Each NR band : FR1 Channel bandwidths for each NR band : FR2
  • 7. Variable channel BW Refer 38.101-1 Table 5.3.5-1 for details of Channel Bandwidths for Each NR band
  • 8. 3GPP connectivity options Option 1 Option 2 Option 3 Option 4 Option 5 Option 6 Option 7 Option 8 5GCN eNB LTE 5GCN gNB NR eNB LTE EPC gNB NR eNB LTE EPC eNB LTE 5GCN gNB NR eNB LTE 5GCN gNB NR EPC gNB NR EPC gNB NR eNB LTE CP UP
  • 9. 5Garchitectureevolution — Introduce 5GC and next generation services without disturbing existing deployment (NR SA/Option 2) — Fully leverageVoLTE for voice whileNR/5GC matures — EPC-5GC interworking supporting migration — Introduce NR air interface offerpeak data rates early(NR NSA/Option 3) — Fullyleverage VoLTE orfor voicewhile NR matures LTE LTE EPC LTE NR LTE 5G EPC LTE NR LTE/NR Option 1 Option 1 Option 3 Option 1 Option 3 Option 2 5G EPC + 5GC Dual mode core 1 1 1 3 3 2 No impact to legacy services and in-market devices (incl. early 5G devices) while the network evolves
  • 10. NR option 3X NR LTE 5G enabled CN MME S-GW NR LTE 5G enabled CN MME S-GW S1’-U NR LTE 5G enabled CN MME S-GW S1’-U Option 3a Option 3 Option 3X
  • 11. Decoding option 3X • NR Non-Standalone (NR NSA) • introduces the support for the 5G NR air-interface using existing 4G LTE infrastructure. • EN-DC solution • Ericsson’s E-UTRA-NR Dual Connectivity (EN-DC) solution is based on Option 3x: • Signaling Bearer (SRB) & Data Bearer (DRB) • LTE eNB terminates the S1 Control Signaling (S1-C) from EPC and Signaling Radio bearer (SRB) towards the UE. • The user Data Bearer (DRB) is setup either as: • Split bearer: using both LTE and NR radio resources • LTE only bearer: using only LTE radio resources • Split bearer & LTE only bearer • NR gNB terminates the S1-U user plane of the Split bearer for the NR UE. • LTE eNB terminates the S1-U user plane of the LTE only bearer. • X2-C & X2-U interface • The eNB and gNB have X2-C and X2-U connections, where the user data of Split bearer is carried over X2-U, and control signaling over X2-C. DRB NR UE X2-U S1-U gNB S1-C User data Control signalling S1-U eNB X2-C EPC SRB DRB
  • 13. BearerTypes MAC & L1 Master Node (MN) eNodeB, LTE Secondary Node (SN) gNodeB, NR MAC & L1 Option 3x SN Terminated MCG DRB PDCP RLC RLC PDCP RLC Option 3x SN Terminated Split DRB PDCP RLC Option 1 MN Terminated MCG DRB PDCP RLC SRB MN = Master Node SN = Secondary Node SRB = Signaling Radio Bearer DRB = Data Radio Bearer MCG = Master Cell Group SCG = Secondary Cell Group
  • 14. BearerTransitions RLC LTE (MN) NR (SN) PDCP MN Terminated MCG DRB Initial Context Setup / Incoming Handover / RRC Re-establishment SCG Addition SN Release SN Release MAC RLC PDCP RLC MAC SN Terminated Split DRB LTE (MN) NR (SN) SN Addition MAC L1 L1 RLC PDCP SN Terminated MCG DRB LTE (MN) NR (SN) SCG Release MAC L1 L1 MN = Master Node SN = Secondary Node SRB = Signaling Radio Bearer DRB = Data Radio Bearer MCG = Master Cell Group SCG = Secondary Cell Group Split Bearer User Plane Functions: • Downlink User Plane Switching • Downlink User Plane Aggregation • Uplink User Plane Switching • Uplink User Plane Aggregation • Uplink-Downlink Decoupling A B C
  • 15. NRlegsetupatinitialcontext Measurement based NR Leg Setup: If (eNB)ReportConfigB1GUtra.triggerQuantityB1 = SS_RSRP then Event B1 is triggered when: SS_RSRPNR > (eNB)ReportConfigB1GUtra.b1ThresholdRsrp+ (eNB)GUtranFreqRelation.b1ThrRsrpFreqOffset+ (eNB)ReportConfigB1GUtra.hysteresisB1 /2 is fulfilledfor:(eNB)ReportConfigB1GUtra.timeToTriggerB1 if (eNB)ReportConfigB1GUtra.triggerQuantityB1 = SS_RSRQ then Event B1 is triggered when: SS_RSRQNR> (eNB)ReportConfigB1GUtra.b1ThresholdRsrq / 10 + (eNB)GUtranFreqRelation.b1ThrRsrqFreqOffset / 10 + (eNB)ReportConfigB1GUtra.hysteresisB1 / 2 is fulfilled for: (eNB)ReportConfigB1GUtra.timeToTriggerB1 Configuration based NR Leg Setup: Configuration-based involves a blind setup to a pre-configured NR cell,The NR cell reference is defined with the following attribute: EUtranCellFDD.extGUtranCellRef If extGUtranCellRef is defined, then SN addition is configuration-based
  • 16. BearerTransitions RLC LTE (MN) NR (SN) PDCP MN Terminated MCG DRB Initial Context Setup / Incoming Handover / RRC Re-establishment SCG Addition SN Release SN Release MAC RLC PDCP RLC MAC SN Terminated Split DRB LTE (MN) NR (SN) SN Addition MAC L1 L1 RLC PDCP SN Terminated MCG DRB LTE (MN) NR (SN) SCG Release MAC L1 L1 MN = Master Node SN = Secondary Node SRB = Signaling Radio Bearer DRB = Data Radio Bearer MCG = Master Cell Group SCG = Secondary Cell Group Split Bearer User Plane Functions: • Downlink User Plane Switching • Downlink User Plane Aggregation • Uplink User Plane Switching • Uplink User Plane Aggregation • Uplink-Downlink Decoupling A B C
  • 18. DownlinkFastSwitch QCI 5 MN SN QCI 9 LTE PDCP LTE RLC LTE MAC & L1 LTE RLC NR MAC & L1 NR RLC NR PDCP QCI 5 MN SN QCI 9 LTE PDCP LTE RLC LTE MAC & L1 LTE RLC NR RLC NR PDCP DL Fast Switch LTE NR Leg NR MAC & L1 DL UP Data sent over LTE or NR Leg
  • 20. DownlinkEN-DCAggregation Single Leg NR Single Leg LTE Aggregation LTE + NR Poor NR quality, lack of NR CQI reports Good NR quality Poor NR quality, lack of NR CQI reports • FC is enabled • PDCP buffer age > dcDlAggActTime All packets sent and acknowledged plus dcDlAggExpiryTimer NR RLF Packets in PDCP buffer older than threshold: Start to schedule DL data on both legs according to Flow Control feedback information. PDCP buffer empty: Start next transmission in Single NR Leg At NR Leg Setup PDCP will start to transmit DL user data in the NR Leg LTE NR RLF Poor NR quality detected: Resend non-acknowledged packets in the LTE Leg NR RLF Parameters: dcDlAggActTime dcDlAggExpiryTimer
  • 21. DownlinkDCAggregation QCI5 MN SN QCI9 LTE PDCP LTE RLC LTE MAC & L1 LTE RLC NR MAC & L1 NR RLC NR PDCP LTE Leg NR Leg Parameters: dcDlAggActTime dcDlAggExpiryTimer DL UP Data sent over both LTE and NR Leg
  • 22. ULLegSwitchingbetweenNRandLTE QCI5 MN SN QCI9 LTE PDCP LTE RLC LTE MAC & L1 LTE RLC NR MAC & L1 NR RLC NR PDCP Switch from NR to LTE -Triggered when poor NR quality detected in UL -Switch triggered immediately UL Leg Switching from NR to LTE QCI5 MN SN QCI9 LTE PDCP LTE RLC LTE MAC & L1 LTE RLC NR MAC & L1 NR RLC NR PDCP Switch from LTE to NR -Triggered when good NR quality detected in UL -UL Prohibit timer should prevent too frequent switching UL Leg Switching from LTE to NR
  • 24. UplinkUserPlaneAggregation — Enables transmission of uplink user plane data simultaneously on both the MCG and SCG — Improves the end user throughput — Works independently of uplink user plane switching UL User Plane Switching UE transmits on: MCG UE transmits on: SCG Poor NR UL SINR Good NR UL SINR Primary path: SCG UE transmits on: MCG & SCG Primary path: MCG UE transmits on: MCG & SCG Poor NR UL SINR Good NR SINR Buffered data above threshold Buffered data below threshold Buffered data above threshold Buffered data below threshold UL User Plane Aggregation Primary path: MCG UE transmits on: MCG Primary path: SCG UE transmits on: SCG Parameters: ulDataSplitThreshold
  • 25. Uplink-DownlinkDecouplingforSplitBearer UL & DL UL & DL Pathloss NR LTE Limit of NR Downlink NR coverage extension due to UL-DL decoupling DL Limit of NR Uplink DL UL & DL
  • 26. BearerTransitions RLC LTE (MN) NR (SN) PDCP MN Terminated MCG DRB Initial Context Setup / Incoming Handover / RRC Re-establishment SCG Addition SN Release SN Release MAC RLC PDCP RLC MAC SN Terminated Split DRB LTE (MN) NR (SN) SN Addition MAC L1 L1 RLC LTE (MN) NR (SN) PDCP SN Terminated MCG DRB SCG Release MAC L1 L1 MN = Master Node SN = Secondary Node SRB = Signaling Radio Bearer DRB = Data Radio Bearer MCG = Master Cell Group SCG = Secondary Cell Group Split Bearer User Plane Functions: • Downlink User Plane Switching • Downlink User Plane Aggregation • Uplink User Plane Switching • Uplink User Plane Aggregation • Uplink-Downlink Decoupling A B C
  • 27. QCI9 QCI5 QCI5 QCI1 VoLTE setup LTE RLC LTE RLC LTE MAC & L1 MN LTE PDCP NR PDCP NR RLC NR MAC & L1 LTE RLC LTE PDCP LTE PDCP LTE RLC LTE RLC LTE MAC & L1 MN SN SN QCI9 NR PDCP QCI5 QCI1 LTE PDCP LTE RLC LTE PDCP LTE RLC LTE RLC LTE MAC & L1 MN LTE PDCP QCI9 SN Next Mobility Options for Voice in EN-DC 1. At VoLTE setup, any existing NR Leg is released. No more SN terminated bearers during the remaining voice call. 2. At the next mobility event, relocation of PDCP from SN to MN and VoLTE support as in legacy LTE. QCI9 VoLTE setup QCI5 LTE PDCP LTE RLC LTE RLC LTE MAC & L1 MN NR PDCP NR RLC NR MAC & L1 SN QCI5 LTE PDCP LTE RLC QCI1 LTE PDCP LTE RLC LTE RLC LTE MAC & L1 MN QCI9 NR PDCP NR RLC NR MAC & L1 SN Alternative configuration: Keep Split DRB during VoLTE call VoLTE call + simultaneous NR data supported with limited performance: • TTI bundling cannot be activated • Limited support for LTE mobility with many RRC reconfigurations • RRC Re-establishment triggers UE release to idle mode • X2 link break triggers UE release to idle mode Split Bearers with VoLTE Not Allowed Split Bearers with VoLTE Allowed
  • 28. EN-DC Profile allow/Prevent DRBs from Being Split ARP Threshold Relation in EN-DC Profile for Allowing DRBs to Be Split ARP Threshold Relation in EN-DC Profile for Preventing DRBs from Being Split
  • 30. — Uplink CA (New) — 50+50 MHz or 100+100 MHz — Contiguous spectrum only — Activated by gNodeB — Secondary carrier takes user data only CarrierAggregation RLC PDCP RLC SN Terminated Split DRB LTE (MN) NR (SN) HARQ1 HARQ6 MAC … CC1 CC6 L1 … HARQ1 HARQ4 MAC … CC1 CC4 L1 … SCG Resources MCG Resources Carrier Aggregation for NR User Plane Aggregation Carrier Aggregation for LTE NR Band LTE Carriers NR Carriers Low-band (FDD) 6 CC 1 CC Mid-band (TDD) 6 CC 1 CC High-band (TDD) 6 CC 8 CC NR Band LTE carriers NR carriers Low-band (FDD) 1 CC 1 CC Mid-band (TDD) 1 CC 1 CC High-band (TDD) 1 CC 2 CC — Downlink CA — Increase in supported configurations CC = Component Carrier MN = Master Node SN = Secondary Node MCG = Master Cell Group SCG = Secondary Cell Group
  • 31. Why ESS ? — Ericsson’s 5G main RAN competitive advantage: — Introduce 5G in existing 4G bands without hard/static refarming spectrum — Smooth and fast migration — Lowest TCO for 5G introduction — Shared Radio + RAN Compute + Spectrum Low band is considered for 5G deployment ESS is solution
  • 32. ESS vs ISS DSS (Dynamic Spectrum Sharing) has the following characteristics: • Frequency allocation granularity — 100% NR, LTE 50%/NR 50%,100%LTE • Time allocation granularity on 1ms ISS (Instant Spectrum Sharing) has the following characteristics: • Frequency allocation granularity on RBG level (DL) • Possible FDM or TDM sharing • Time allocation granularity on ~1 ms 20’Q1 (GA) 20’Q2 Time LTE NR-NSA Frequency 1ms Dynamic Spectrum Sharing Instant Spectrum Sharing LTE NR-NSA Time Frequency 1ms
  • 33. 20.Q2 prerequisites and limitations Limitations: ●FDD only ●NSA ●No NB-IOT or CAT-M ●No combined cell ●2 and 4 antenna ●LTE transmission modes TM3, TM4, TM9 ●Max 4 layers ●Review Feature Parity Pre-requisites: ●Requires mixed mode BaseBand ●No 5 MHz ●BW and centerfrequencies must matchon LTE and NR
  • 34. ESS Knowledge Sharing Session (NPI) Please find link for ESS KS delivered by NPI team Session: 1:- https://web.microsoftstream.com/video/78e8c6e1-199b-4ab9-b06e-9fbb0b671b67 Session: 2:- https://web.microsoftstream.com/video/30f10a6d-120d-446e-b96f-22e8c4dd2dd7
  • 35. 3GPP 5G System (5GS) -5G Core network and 5G-(R)AN 5GS 5GC 5G-RAN • Authentication Server Function (AUSF) • Core Access and Mobility Management Function (AMF) • Data network (DN), e.g. operator services, Internet access • Policy Control function (PCF) • Session Management Function (SMF) • Unified Data Management (UDM) • User plane Function (UPF) • Application Function (AF) • User Equipment (UE) • (Radio) Access Network ((R)AN)
  • 36. BBU Core Network DU Core Network CU-UP RRC PDCP RLC MAC PHY PHY’’ MAC RLC CU-CP RRC PDCP Fronthaul Backhaul Fronthaul Midhaul Backhaul CU/DUsplit-RANvirtualization F1-C F1-U E1 Architecture Change — In 3GPP Release 15, BBU will splitinto CU and DU — CU will further split into CU-CP and CU-UP — CU will be virtualized on generic hardware, DU will not — F1 and E1 interface standardized in 3GPP Before Split After Split CU CU: Centralized Unit, CU-CP: CU Control Plane CU-UP,vPP: CU User Plane, DU,vRC: Distributed Unit vPP vRC Logical Network Functions: RCF – Radio Controller Function Corresponds to 3GPP logical entity CU-CP in a gNB PPF – Packet Processing Function Corresponds to 3GPP logical entity CU-UP in a gNB RPF – Radio Processing Function Corresponds to 3GPP logical entity DU in a gNB
  • 37. 5G network virtualization Hub Central Office Aggregation Switching Primary Antenna Critical Comm. & MTC Enterprise & Industry Enhanced Mobile Broadband Massive MTC UPF CCF PPF SDM General Purpose Processor General Purpose Processor General Purpose Processor General Purpose Processor General Purpose Processor UPF CCF PPF SDM UPF CCF PPF SDM UPF CCF PPF SDM UPF CCF PPF SDM BPF BPF BPF BPF PPF BPF BPF BPF RCF RCF RCF RCF RCF UPF CCF PPF SDM UPF CCF PPF SDM UPF CCF PPF SDM UPF CCF PPF SDM UPF CCF PPF SDM UPF CCF PPF SDM UPF CCF PPF SDM UPF CCF PPF SDM UPF CCF PPF SDM UPF CCF PPF SDM RCF RCF RCF RCF RCF RCF RCF RCF RCF UPF CCF PPF SDM UPF CCF PPF SDM UPF CCF PPF SDM UPF CCF PPF SDM UPF CCF PPF SDM RCF RCF RCF RCF RCF RCF
  • 38. ORAN – Founded by 12 large operators, including AT&T, China Mobile, China Telecom, NTT DOCOMO, SKT, Verizon, DT, Orange, in MWC Shanghai, June 2018 – Target: to drive RAN to be Intelligent, Open, Open Source, White-Box – Now 7 Working Group established
  • 39. Content • 5G overview and NR Architecture evolution. • NR spectrum | deployment options | NSA architecture | NSA bearers | ENDC configuration | VoLTE in NSA | SA architecture | Virtual RAN | ESS | ORAN • NR key techniques. • Numerology | Waveform | time and frequency structure | frame structure | TDD pattern | Ultra lean design • NR mobility corresponding features • Mobility in NSA | Anchor Control Strategies & Solutions | associated mobility features. • M-MIMO in NR • M-MIMO & AAS overview | analog and digital beamforming | beam management. • NR call flow • NSA call flow • NR hardware product portfolio. • AIR overview | AIR used in NR | classical radio in NR | BB in NR • NR performance management. • NR performance monitoring | KPI & counter monitoring in 5G
  • 40. › LTE: A single 15 kHz subcarrier spacing – Normal and extended cyclic prefix › NR supports sub-1GHz to several 10 GHz spectrum range  Multiple numerologies required – Flexible subcarrier spacing 2n∙15 kHz – Scaled from LTE numerology – Higher subcarrier spacing 🢥 Shorter symbols and cyclic prefix – Extended cyclic prefix only for 60 kHz NR – Basic numerology Data [kHz] <6 GHz 15, 30, (60*) >6 GHz 60, 120 *Optional for UE, also supports ECP Rel-15 supports the following numerologies 15 kHz 30 kHz 60 kHz 120 kHz 240 kHz Main reason for having different numerology is high phase noise in higher frequency SCS [kHz] Max bandwidth [MHz] 15 ≈50 30 ≈100 60 ≈200 120 ≈400 4096 FFT size as compare to 2048 in LTE Out of 4K 3300 is used typically , as we use 1200 from 2048 in LTE 3300 * 15 = 50Mhz , 3300*30 = 100 Mhz etc..
  • 41. NR - Numerology (Data) • 30 kHz subcarrier spa ing is supported in 18.Q4 for FR1 (< 6 G z) Low frequency Low-medium frequency (Optimized CP) 60 kHz, ECP mmW Subcarrier spacing 15 kHz 30 kHz 60 kHz 120 kHz Slot duration 1000 µs 500 µs 250 µs 125 µs Slot illustration OFDM symbol, duration 66.67 µs 33.33 µs 16.67 µs 8.33 µs Cyclic prefix, duration 4.69 µs (6.6%) 2.34 µs (6.6%) 4.17 µs (6.6%) 0.59 µs (6.6%) OFDM symbol including cyclic prefix 71.35 µs 35.68 µs 20.83 µs 8.92 µs Max carrier bandwidth (assuming 4k FFT) 400 MHz c 50 MHz 100 MHz H 200 MHz
  • 42. Spectrum trade-off High band 24 Ghz to 40 Ghz Mid band - 2 3.5 Ghz to 6 Ghz Mid band - 1 1Ghz to 2.6 Ghz low band Sub 1 Ghz Coverage Bandwidth latency
  • 43. — Higher numerology 🢥 Shorter slot 🢥 Lower latency — But also shorter cyclicprefix 🢥 Less robust to channel time dispersion — Radio frame duration is 10 ms — Subframe duration is 1 ms — One slot = 14 symbols — One resource block = 12 subcarriers NR– Time/FrequencyStructure 1 slot = 1000 µs 1 slot = 500 µs 125 µs 15 kHz low band 1 OFDM symbol = 35.68 µs (incl CP 2.34 µs) 30 kHz mid-band 120 kHz mmW 1 OFDM symbol = 71.35 µs (incl CP 4.69 µs) 1 OFDM symbol = 8.92 µs (incl CP 0.59 µs)
  • 44. Radio Frame vs Numerology
  • 45. Frame Structure › Subframe – 1 ms – Numerology-independent clock › Slot Type A – 14 OFDM symbols – Length in ms scales with numerology – Aligned with subframe boundaries – Typical scheduling unit (TTI) › Slot Type B – “Mini-slot” – 2, 4 or 7 OFDM symbols (December rel 15) – Can start at any symbol boundary – One way to reduce latency 15 kHz 30 kHz 60 kHz One subframe (1 ms) One slot One “mini-slot”
  • 46. Waveform › OFDM is the basis for UL and DL – Symmetric design, same waveform in UL and DL – Full support of MIMO in DL and UL – Flexible Numerology OFDM mod. Modulation symbols Map each modulation symbol to a specific time/frequency element Modulation symbols spread in frequency domain OFDM mod. Modulation symbols DFT › Complementary DFT-spread OFDM for UL – To reduce PAPR and improve coverage – Limited to single-layer transmissions – Network controls whether to use DFT-precoding or not › DFT-S-OFDM is referred to as “Transform Precoding” in 3GPP
  • 47. DFTS-OFDM Waveform in Uplink feature Gives the Operator customer possibility to more efficiently utilize the UE power in their network • Enables the operator to configure the cell such that UE Msg3 transmission is either:CP OFDM or DFTS OFDM • Enables the operator to configure the cell such that UE (Non Msg3) transmission is either:CP OFDM or DFTS OFDM
  • 49. OFDM - Orthogonal Frequency Division Multiplexing Benefits + Frequency diversity + Robust against ISI + Easy to implement + Flexible BW + Suitable for MIMO + Classic technology (WLAN, ADSL etc) Drawbacks - Sensitive to doppler and freq errors - High PAPR - Overhead › Orthogonal: all other subcarriers zero at sampling point › Sub carrier spacing Δf= e.g 15, 30, 60, 120, 240, 480 kHz › Delay spread << Symbol duration < Coherence time f Δf
  • 50. NR TDD UL/DL Patterns — 3GPP Rel15 has provided large flexibility of TDD patterns , following are supported by Ericsson
  • 53. › Minimize network transmissions not directly related to user-data delivery – Baseline: resources are treated as undefined unless explicitly indicated otherwise – Reference signal transmissions and measurements are scheduled (i.e. DM-RS instead of CRS) › Future-proof design, energy efficiency, interference minimization Ultra-Lean Design Ultra-lean • No ”always-on” refeference signals • Minimum amount of ”always-broadcast ”system information • ... Today • Reference signals • Broadcast” system information • ...
  • 55. Content • 5G overview and NR Architecture evolution. • NR spectrum | deployment options | NSA architecture | NSA bearers | ENDC configuration | VoLTE in NSA | SA architecture | Virtual RAN | ESS | ORAN • NR key techniques. • Numerology | Waveform | time and frequency structure | frame structure | TDD pattern | Ultra lean design • NR mobility corresponding features • Mobility in NSA | Anchor Control Strategies & Solutions | associated mobility features. • M-MIMO in NR • M-MIMO & AAS overview | analog and digital beamforming | beam management. • NR hardware product portfolio. • AIR overview | AIR used in NR | classical radio in NR | BB in NR • NR call flow • NSA call flow • NR performance management. • NR performance monitoring | KPI & counter monitoring in 5G
  • 56. MobilityStates(CoreNW&UE) Connected to Idle (User inactivity, etc) Detach EMM-REGISTERED Idle to Connected (User activity, paging etc) EMM-DEREGISTERED ECM-IDLE ECM-IDLE ECM-CONNECTED Detach Attach
  • 57. IdleModeBehaviorforEN-DC-capableUEs — EN-DC capable UEs are camping in LTE, i.e.the following idlemode tasks are performed in LTE — PLMN selection — System information acquisition — Cellselectionand reselection — Tracking area update — Paging — Idle mode behavior for EN-DC capable UEs are identicalto idlemode behavior for legacy LTE UEs MCG DRB Split DRB MeNB SgNB LTE PDCP LTE RLC LTE RLC LTE MAC NR PDCP NR RLC NR MAC
  • 58. EN-DCBearerTypeTransitions — NR Leg Setup — Bearer is reconfiguredto an SN terminated Split DRB — Change of PDCP version and security key — Measurement based setup (B1) or configuration based setup (blind) — Initial ContextSetup — Bearer is set up as MN terminated MCG DRB — User plane data over LTE radio only — NR Leg Release — Bearer type is changed to MN terminated MCG DRB — Change of PDCP version and security key — Triggeredby e.g.NR RLF, NR Celllock, — Release to Idle mode – UE is released to IDLE mode – Any resources for the Split DRB in the eNB and the gNB are released MN terminated MCG DRB SN terminated Split DRB Initial Context Setup NR Leg Setup (entering NR coverage) NR Leg Release (leaving NR coverage) Release to Idle mode Release to Idle mode
  • 59. Mobilityin18.Q4 LTE frequency NR frequency NR Cell B LTE Cell B NR Cell C NR Cell A UE enters RRC connected mode NR Leg Setup Cell A NR Leg Release NR Cell A. B1 report (NR Cell B) NR RLF NR Leg Setup NR Cell B NR Leg Release NR Cell B. NR RLF NR Leg Setup NR Cell C. NR Leg Release NR Cell C. NR Leg Setup NR Cell C. NR RLF NR Leg Release NR Cell C. Legacy LTE HO LTE Cell A B1 report (NR Cell C) B1 report (NR Cell C) Intra-freq Event A3 (2) Intra-freq Event A3 (1)
  • 60. Mobilityincurrentrelease UE mobility B1 report SN Addition NR Cell B NR Cell B NR Event A3 PSCell Change Data Bearer Setup LTE Cell A Configure B1 B1 report SN Addition NR Cell A LTE Event A3 SN Release NR Cell B Legacy LTE HO Cell A to B Configure B1 NR Cell A NR Radio Link Failure SN Release NR Cell B Configure B1 LTE Cell A LTE Cell B NR Intra-Frequency Mobility 5G Event Measures Use Main Controlling Parameter NSA B1 NR To detect NR coverage for SN addition (eNB).ReportConfigB1GUtra.b1ThresholdRsrp NSA A3 NR To facilitate intra-frequency mobility (PSCell Change) on NR NSA (gNB).ReportConfigA3.offset NSA A5 LTE To detect coverage from potential LTE anchor cells for EN-DC triggered handover (eNB).ReportConfigEUtraInterFreqLb.a5Threshold1Rsrp
  • 61. NRIntra-FrequencyHandover withSplitBearer UE mobility 4) B1 report 5) SN Addition, (including addition of NR Cell B) 1) NR Event A3 2) SN Release, (including release of NR Cell A) 3) Configure B1 NR Cell A NR Cell B LTE Cell UE mobility 1) NR Event A3 2) PSCell Change NR Cell A NR Cell B LTE Cell
  • 64. Configurations Create NR frequency relations from the NR cells NR cell relations are needed between the 2 NR cells
  • 65. Report configuration for UE A3 measurement :ReportConfigA3 Configurations
  • 66. Mobilityincurrentrelease UE mobility B1 report SN Addition NR Cell B NR Cell B NR Event A3 PSCell Change Data Bearer Setup LTE Cell A Configure B1 B1 report SN Addition NR Cell A LTE Event A3 SN Release NR Cell B Legacy LTE HO Cell A to B Configure B1 NR Cell A NR Radio Link Failure SN Release NR Cell B Configure B1 LTE Cell A LTE Cell B NR Intra-Frequency Mobility NR Coverage-TriggeredSecondary Node Release ,this will detect edge of NR coverage , so that SN release can be triggered in gracefully way without waiting for RLF.
  • 67. NRCoverage-TriggeredSecondaryNodeRelease — Part of gNodeB featureLTE-NR Dual Connectivity — A2 criticalmeasurement configured in UE — Key parameters: — NRCellCU.mcpcEnabled = true — McpcPSCellProfile — rsrpCriticalEnabled = true — rsrpCritical.threshold — rsrpCritical.hysteresis — rsrpCritical.timeToTrigger — When gNodeB receivesA2 itinitiates SN release — A2 must be setbelow B1 threshold Pathloss NR LTE A2 Critical (for SN release) B1 (for SN addition)
  • 69. AnchorCarrierConsiderations Any LTE carrier can be used as the anchor for EN-DC connections… …however,in a given deployment some carriers may be unsuitable: — EN-DC Band Combinations not Standardized — UE’s don’t Support EN-DC Band Combinations — UE don’tSupport Simultaneous Rx &Tx on theCombination — Potential IM Interference In Band Combination — LTE Carrier Hosted on Old Baseband — Other Considerations — Load, Coverage, Capacity — ESS Considerations — — ESS carrier cannot be used as anchor to itself However, LTE frequency may be used as anchor for another NR NSA frequency NR NSA Carrier LTE Carrier 3 LTE Carrier 2 LTE Carrier 1   
  • 70.    5G_HO_Go 5G_Cov_Stay 5G_LB_Stay AnchorCarrierControl– StrategyComponents ? LTE – Anchor Carrier LTE – Non-Anchor Carrier   Idle Mode Reselection 5G_Idle_Go 5G_Idle_Stay Connected Mode Handover
  • 71. DifferentiationMechanisms — UE Capability — UE informs the eNodeB of EN-DC capability — Also considers “NR Restriction” in HRL — SPID (Subscriber Profile ID for RAT/Frequency Priority) — Number from 1 to 256 — Set per subscriber in the HSS — Sent from HSS toMME toeNodeB — QCI (Quality of Service Class Indicator) — Number from 0 to 255 — Set persubscriber and APN in the HSS — Sent from HSS to MME to eNodeB — Can be re-mapped using SPID in eNodeB Differentiation 5G Non-5G ?
  • 72. AnchorControlStrategies&Solutions Strategy Component Mechanism for Differentiating 5G UEs UE Capability SPID QCI 5G_Idle_Go CAIMC STM - 5G_Idle_Stay CAIMC STM - 5G_Cov_Stay - STM & MCPC MLSTM 5G_HO_Go ENDCHO STM & MCPC MLSTM 5G_IFLB_Stay BIC STM SSLM Each box represents a solution, using the listed features. Each has a section in the guideline. SPID = Subscriber Profile ID QCI = Quality of Service Class Indicator CAIMC = Capability Aware Idle Mode Control ENDCHO = EN-DC Triggered Handover BIC = Basic Intelligent Connectivity STM = Subscriber Triggered Mobility MCPC = Mobility Control at Poor Coverage MLSTM = Multi-Layer Service-Triggered Mobility SSLM = Service-Specific Load Management
  • 73. — CAIMC encourages UEs in idle mode to move to a frequencythat they can use for EN-DC — Normally, in idle mode UEs use cellReselectionPriority values, broadcast in system information to guide reselection — With CAIMC these values are overridden with dedicated values — Supplied to UE at connection release in IMMCI message — Highest prioritiesgiven to EN-DC capable frequencies — UE uses these instead of prioritiesbroadcast in system information — Impacts only EN-DC capable UEs — If more than one EN-DC capable target frequency — Prioritizebased on hit rate ifBNR or CSM active — Prioritize based on EN-DC capable cellcount ifnot CapabilityAwareIdleModeControl(CAIMC) Pathloss LTE Prio = 5 (anchor) LTE Prio = 6 (anchor) LTE Prio = 7 (non anchor) NR NR
  • 74. Hit Rate Ranking (example) Hit Rate Ranking If UePolicyOptimization.coverageAwareImc = true and either the Best Neighbor Relations for Intra-LTE Load Management (BNR) feature or the Cell Sleep Mode (CSM) feature is active, then CAIMC uses the hit rate statistics from the active feature to rank frequencies. If both features are active, then CAIMC uses the hit rates from BNR. For ranking Cell Count Ranking If UePolicyOptimization.coverageAwareImc = false or if neither BNR nor CSM is active, then, for ranking, CAIMC uses the number of EN-DC capable neighbor cells on each frequency.
  • 75. Configuration • Activate feature • Activate license for this feature CAIMC (License number :CXC 4012371) • Configure cell as EN-DC capable • EN-DC • EUtrancellFDD/TDD::endcAllowedPlmnList • endcAllowedPlmnListshould not be empty to be considered cell as EN-DC capable • Basic Intelligent Connectivity (FAJ 801 1013) should be enabled when configuring cell as EN-DC capable
  • 76. EN-DCTriggeredHandover(ENDCHO) LTE (non-anchor) NR NSA LTE (anchor) 4G 5G 5G 4G 5G 5G 4G ENDCHO  B1  A5  ENDCHO  B1  A5  ENDCHO  B1  A5  — Hands over UEs from cells in which they can’tuse EN-DC to cells in which they can use EN-DC — Triggered at initial context setup (i.e.in connected mode) — Configures measurements in UE to detectcoverage: — B1 and A5 configured together — HO triggered when B1 and A5 received — B1 first,then A5 within 120 ms — After HO, new B1 measurements for SN addition  — ENDCHO configures up to 3 sets of measurements — Similar to those configured by BIC for SN Addition — NR frequencies: B1 Event: endcB1MeasPriority — LTE frequencies: A5 Event: endcHoFreqPriority — Same thresholds as IFLB: a5Threshold1Rsrp, a5Threshold2Rsrp, hysteresisA5
  • 78. LTE and NR frequency selection
  • 79. NR 2 NR 1 EN-DC EN-DC ENDCHO EN-DC UE_D3 EN-DC  UE_B3 ENDCHO UE_A3 UE_B4 LTE 1 UE_A1 UE_D2 UE_B2 UE_A2 LTE 2 endcB1MeasPriority = 5 ENDCHO No EN-DC UE_A4 EN-DC No EN-DC     EN-DC endcHoFreqPriority  -1 EN-DC UE_D4    = EN-DC Configured = EUtranFreqRelation ENDCHO– InteractionofUECapability,PriorityandCoverage endcB1MeasPriority = 7  Measured second UE_B1 UE_D1 Measured first 
  • 80. Configuration Feature Activation on the ENB endcHOFreqPriority for EN-DC capable cells need to be set to higher priority
  • 81. Configuration ReportConfigEUtraInterFreqLb for the source non-endc cell Endcmeastime
  • 82. ENDCHOFeatures LTE1 (Baseband Node) LTE2 NR C 1) Legacy LTE Intra-Frequency HO 8) SN Addition 3) B1 report 4) A5 report 5) ENDCHO 6) Configure B1 7) B1 report 8) SN Addition 3) B1 report 5) ENDCHO 6) Configure B1 7) B1 report 1) Setup on LTE 2) Configure A5 and B1 4) A5 report (<240 ms) Stationary UE A EN-DC Triggered Handover During Connected Mode Mobility EN-DC Triggered Handover During Setup 2) Configure B1 and A5 1) Setup on LTE 2) Configure A5 3) A5 report 4) ENDCHO 5) Configure B1 6) B1 report 7) SN Addition B Stationary UE Basic EN-DC Triggered Handover During Setup LTE1 LTE1 (DU Node) — EN-DC Triggered Handover During Setup — BasicEN-DC Triggered Handover During Setup — EN-DC Triggered Handover During Connected ModeMobility Moving UE
  • 83. Packet Forwarding at NR Leg Release • The introduction of packet forwarding over X2-U (SgNB to MeNB) will ensure that no packets are lost at NR Leg Release. This will reduce the number of dropped packages during mobility and/or other reasons where an SN release is needed. • This avoidance of DL packet loss will reduce retransmissions on higher protocol levels. Retransmissions may trigger TCP slow start which would lower the traffic rate for a period of time. RLC LTE (MN) NR (SN) PDCP MN Terminated MCG DRB Initial Context Setup / Incoming Handover / RRC Re-establishment SN Release MAC RLC LTE (MN) NR (SN) PDCP RLC MAC SN Terminated Split DRB SN Addition MAC L1 L1 L1
  • 84. SNReleasewithPacketForwarding UE MeNB SgNB RRC: RRCConnectionReconfigurationComplete RRC: RRCConnectionReconfiguration X2AP: SGNB RELEASE REQUEST ACKNOWLEDGE X2AP: SN STATUS TRANSFER X2AP: SGNB RELEASE REQUEST X2AP: UE CONTEXT RELEASE Packet Forwarding Tunnel PDCP SDUs UE MeNB SgNB RRC: RRCConnectionReconfigurationComplete RRC: RRCConnectionReconfiguration X2AP: SGNB RELEASE CONFIRM X2AP: SN STATUS TRANSFER X2AP: SGNB RELEASE REQUIRED X2AP: UE CONTEXT RELEASE Packet Forwarding Tunnel PDCP SDUs MN Initiated SN Initiated
  • 85. ●There is no new MO class and attribute introduced by this feature Feature activation ●The license Basic Intelligent Connectivity shall be enabled ●System constant “enableX2PacketForwardingAtSnRelease(4325)” used to enable this feature on the MeNB ConfigurationManagement
  • 86. DataBearerAddition Bearer Addition From Connected Mode PDCP RLC RLC MAC & L1 LTE (MN) SRB QCI5 PDCP RLC QCI7 PDCP MN terminated MCG DRB RLC NR (SN) QCI9 PDCP SN terminated Split DRB PDCP RLC MAC & L1 LTE (MN) SRB QCI5 PDCP RLC MN terminated MCG DRB RLC NR (SN) QCI9 SN terminated Split DRB RLC MAC & L1 PDCP RLC MAC & L1 RLC QCI9 PDCP RLC MAC & L1 — Previously, added data bearers were always set up as MN Terminated MCG bearers — Now, data bearers can be added eitheras MN terminated or SN terminated MN = Master Node SN = Secondary Node MCG = Master Cell Group SCG = Secondary Cell Group DRB = Data Radio Bearer
  • 87. Content • 5G overview and NR Architecture evolution. • NR spectrum | deployment options | NSA architecture | NSA bearers | ENDC configuration | VoLTE in NSA | SA architecture | Virtual RAN | ESS | ORAN • NR key techniques. • Numerology | Waveform | time and frequency structure | frame structure | TDD pattern | Ultra lean design • NR mobility corresponding features • Mobility in NSA | Anchor Control Strategies & Solutions | associated mobility features. • M-MIMO in NR • M-MIMO & AAS overview | analog and digital beamforming | beam management. • NR call flow • NSA call flow • NR hardware product portfolio. • AIR overview | AIR used in NR | classical radio in NR | BB in NR • NR performance management. • NR performance monitoring | KPI & counter monitoring in 5G
  • 88. AntennaTerminology A dual-polarized antenna element Consisting of two antenna elements A Subarray of dual-polarized antenna elements A subarray always has two radio chains 2T2R An antenna array of subarrays In this case 64T64R + 3dB Directivity Gain Double Antenna Area Array Size Matters Size Matters for Performance
  • 89. ARRAYS o f Subarrays Unused beam directions +60° +15° -15° -60° +15° -15° +60° -60° +60° +60° -60° -30° › More subarrays (= more transmitters / receivers) will not always give higher capacity! › Choose array size based on the UE angular distribution. +30° -30° +30° -60°
  • 90. Antǐnna configurations 32T32R 32 subarrays 4x4x2 ports 2x1 subarray 4x8x2 ports 2x1 subarray 64T64R 64 subarrays 8T8R 8 subarrays 1x4x2 ports 8x1 subarray
  • 91. Antennaconfigurationdependsondeploymentscenario +60° +10° -10° +60° +30° 64T64R Radio gives better performance than 16T16R — 64T64R vertical beamforming and better interference control Each Dot is a UE seen as from RBS Each subarray is 2T2R High Rise Urban Scenario Large vertical angle 16T16R (8x1)x(1x8) 16T16R equals 64T64R performance — Same horizontal beamforming ability Suburban, Rural Scenario or low rise Urban In Suburban or low rise urban cells there is no big performance difference between 16T16R and 64T64R
  • 92. Antenna matrix (Mid vs high band) 4 rows 24 columns Subarray with 2-4 2-pol elements 192 TRX AAS Digital Beamforming Analog Beamforming 4 rows 8 columns Subarray with 2-4 x-pol elements High band (AIR 5331) Antenna Branches Antenna Matrix (row x col) Weight Dimensions 768T768R 4 x 24, (2x1 subarray) 14 kg 600x305x110 mm Mid band (ex. AIR 6488) Antenna Branches Antenna Matrix (row x col) Weight Dimensions 64T64R 8 x 8, (2x1 subarray) ~45 kg 800*400*150 mm
  • 93. Massive MIMO • MIMO • Beamforming , Diversity , Spatial multiplexing , precoding (codebook or non codebook based) • SU-MIMO , MU-MIMO • So what is Massive MIMO • Generally more than 8T8R , high gain BF is achieved , we can steer narrow beam , so improve coverage. • CSI Acquisition • But system should know where to direct this narrow beam , this is done based on feedback from UE • Two ways to get feedback: • CSI feedback from UE (PMI , CQI , RI) • Reciprocity CSI (using SRS) , can be used for TDD. • NR MIMO • Analog and digital beamforming. • Beam management.
  • 94. 𝑆 𝐶 = 𝐵 ⋅ log2 1 + 𝑁 Claude Shannon Theory 𝐶 ≈ 𝐵 ⋅ 𝑆 when 𝑆 ≪ 1 𝑁 𝑁 Bandwidth (To support Higher frequency BW need Beamforming is must) Improve SINR (Beamforming is key technology to improve SINR) Coverage At high frequency (mmWave) Coverage at high frequency Capacity MU-MIMO is enabled as SINR is improved due to beamforming , enhancing capacity Why beamforming ???
  • 95. MassiveMIMO gains — Multi-User MIMO — Multiple streams to multiple UE — Multiple UEs reuse same frequency-time resources — Capacity gain in high load and when channel is suitable — Single-User MIMO — Multiple streams to the same UE — Sharp beam follows UE — Higher SINR increases data rate — Benefit irrespectiveof load — CellShaping — Definecellshape tofitUE distribution — Decreases the inter cell interference Array gains Array gains + MU-MIMO gain
  • 96. CellShaping CommonChannelBeamforming High-rise (HPBW: H = 20°, V= 30°) Hotspot (HPBW: H = 65°, V= 30°) Macro (HPBW: H = 65°, V= 8°)
  • 97. SingleuserMIMO (SU-MIMO) — In SU-MIMO one user pertime-frequency resource on all layers — User specific BF provide array gain — SINR increases as #antennas increase — Benefits regardless of load Layer 1 Layer 2 UE 1 UE 2 UE 3 UE 4 time
  • 98. MultiuserMIMO(MU-MIMO) — In MU-MIMO multiple users are using thesame resources — Since power is shared between layers, SINR will reduce with increasing no of MU-MIMO layers — MU-MIMO is beneficial if — UEs are BW limited,i.e.have maxed out capacity in good SINR — More layers available than UE capability — MU-MIMO prerequisite — There are UEs to “pair”,and — These UEs are spatially separated, and — The combined cellbitrate is higher than the bit rate a single UE could get UE 1 UE 2 UE 3 UE 4 Layer 1 Layer 2 Layer 3 Layer 4 Layers – Number of data streams transmitted or received Beam – A beam consisting of one or two polarizations Rank – Number of layers to a single UE (reported by UE)
  • 99. #LAYERS:DLMU-MIMO Highlyloaded scenario — 4-6 layers useful — Mostly not exceeded in normal operation — 8 layers further gains — At high load — 16 layers — Limited extra gain — Only extreme load — 32 layers no gain — Sometimes losses Most of the MU-MIMO gain from 8 layers. < 5% additional gain with 16.
  • 100. Advanced Antenna System — TRXs integrated in the antenna array — Two PA persub-array — Baseband controls each sub-array — Adaptable &flexible weighting — Full dimension beamforming — ‘User’and ‘Cell’specific beamforming in horizontal and verticaldomain AAS(advancedantennasystem) Baseband Antenna ports Sub-array weights PA PA ‘User’ and ‘Cell’ specific beamforming in horizontal and vertical domain Active array antenna Baseband 1 sub-array Adaptable horizontally & vertically
  • 101. Digital vs Analog Beamforming • Digital BF (Low and Mid Band products) • The weights are applied in the Baseband before D/A conversion • Most Flexible and best performance: • Different Weights per frequency blocks (PRBs) • Different weights in the same frequency block at same time (layers) • Possible to transmit to several users simultaneously in different beams • Analog BF (mmW first releases) • The weights are applied in the time domain after D/A conversion. • Same weights (beam) for an entire timeslot • With 2 polarizations, can do two beams per timeslot • Simple but inefficient use of spectrum Time Time
  • 103. Analog&HybridBeamforming Time Time Time Coding and Modulation IFFT DAC v RF v RF Coding and Modulation IFFT DAC v RF v RF Coding and Modulation IFFT DAC v RF v RF Analog beamforming Hybrid beamforming Several parallel analog networks that allows multiple beams/layers simultaneously
  • 104. WhatisthedifferencebetweenLTErel-14 andNRMIMO? Formid band (below ~6GHz) — NR and LTE Rel.14 similar in many ways: — Same/similar codebooks — Same/similar support for antenna port layouts — Main difference: — The framework for transmitting reference signals is more flexible in NR Forhigh band (above 6GHz) — A set of “beam management features” have beendefined — Will support beam-tracking like techniques Active link Monitored link
  • 105. ControlChannelBeamforming-Midband FAJ1214998 Description — Three coverage profiles (macro,hot spot, high-rise) are supported for cellshaping — All common channels as wellas the envelop of the UE specific traffic beams are aligned to these profiles — Ericsson Solution — Control Channel Beamforming uses an Ericsson proprietary implementation that maintains coverage while maintaining full power resulting in coverage advantage Benefit — Suitable cellshape profilecan be selectedfor the deployment scenario — Up to +6 dB control channel coverage advantage Massive MIMO
  • 106. MassiveMIMO -Midband FAJ1214911 Description — Provides support for Massive MIMO in mid frequencybands — Support for digital beamforming — Codebook-based SU-MIMO with up to 4 DL layers and 1 UL layer — Horizontal and vertical beamforming — The system will choose between 8/16/32 CSI-RS based on different UE capabilities — Optimal low layer split architecture with eCPRI Benefit — Enhanced coverage with directional beamforming — Improved network capacity and increased user data rate — Reduced interferenceand improved cell-edge throughput Massive MIMO
  • 107. NR M-MIMO (mid band)
  • 108. Single-User MIMO Configuration Options for codebook-based transmission Single-User MIMO Configurations The supported, configurable combinations of the following feature characteristics are categorized: • Coverage shape • Number of CSI-RS ports • Codebook configuration setting in radios using single-user MIMO The following configuration status options are used: • Preferred : A safe and standard configuration considering performance impact. • Non-standard : A functional configuration where optimal performance is not guaranteed. • Infeasible: A configuration not possible for one of the following reasons: • It is not available for the given radio unit type. • The target coverage shape is not achievable by the CSI-RS port and codebook configuration setting.
  • 111. DownlinkMulti-UserMIMO -Midband FAJ1215130 Description — Provides support for spatial multiplexing in the downlink using Type I codebook based MU-MIMO — Up to 8 simultaneous PDSCH layers to differentUEs, e.g.4 UEs with 2 layers each — The DL layers are co-scheduled on the same time and frequency resources — Massive MIMO Mid Band value package is required Benefit — Improved spectral efficiency — Increased capacity — Increased cellthroughput Massive MIMO performance
  • 112. UplinkMulti-UserMIMO-Midband Enhanced-N20.Q4:FAJ1215011 Description — Provides support for spatial multiplexing in the uplink — Up to two layers PUSCH based on fullInterference Rejection Combining (IRC) advanced receiver — The UL layers are co-scheduledon the same time and frequencyresources — Dependencies — Massive MIMO Mid Band enabler value package — Supported on AAS products — Enhanced in N20.Q4 to support up to 4 UL layers Benefit — Increased uplink throughput — Increased spatial resource and uplink capacity due to spatial multiplexing Massive MIMO performance
  • 113. MassiveMIMO - Highband N20.Q4:FAJ1214910 Description — Provides support for Massive MIMO in high frequencybands — 28 GHz and 39 GHz frequency bands — Analog beamforming — Codebook-based SU-MIMO with up to 2 layers in DL and UL — Measurements based on SSB and CSI-RS are used tofind and maintain thebeam pair between the UE and thegNB — In downlink, beam management is based on — P1: InitialgNodeB Tx beam sweep — P2: gNodeB Tx beam sweepfor refinement and beam tracking — P3: UE Rx beam sweep for refinement — In uplink,beam management is based on beam correspondence Benefit — Enhanced coverage with highly directional beamforming — Reduced interferenceand improved cell-edge throughput Base Package
  • 114. Description — Coverage optimized CSI reporting — CSI feedback for P2 tracking isscheduled withoutUL-SCH for the UEs with compromised uplinkcoverage — P2 CSI-RS optimization — Allocate CSI-RS in 1 slot instead of 2 slots for P2 tracking and refinement forcertain radio typeconfigurations — Schedule PDSCH data in unused symbols and slots Benefit — The beam management P2 related signaling becomes morerobust and stable forthe UEs with poor uplink coverage. P2 tracking performance is improved and number of link failures can be reduced — Reduced DL overhead from improved efficiency ofCSI-RS scheduling, depending on radio type configurations — Increased throughput for all radio types as unused symbols are used for DL data EnhancedBeamManagement-Highband N20.Q4:FAJ1215217 Base Package
  • 115. MassiveMIMO High-Band — DL cellshaping — PSS/SSS/PBCH/PDCCH/PDSCH/DMRS — UL cellshaping and UL SU-MIMO with 2 layers — PRACH/PUCCH/PUSCH — Up to 2 layers codebook-based beamforming for DL SU-MIMO. — DL codebook-based beamforming — CSI-RS configurations and CSI reports f[GHz] 37 40 100MHz 100MHz 100MHz 100MHz Beam 1 Beam 3 Beam 5 Beam 7 Beam 2 Beam 4 Beam 6 Beam 8 The Massive MIMO High-Band feature supports the PRODUCT_DEFAULT coverage shape only.
  • 116. Whybeammanagement? High band,analog beamforming — Analog beamforming listens or sends in one directionat the time — Thereforeonly feasible to span selected directionsof thechannel  One will needto rely on a limitednumber of beams. Low / Mid band,digital beamforming — Digital beamforming makes itfeasible to estimate the entire channel by transmitting CSI-RS — Data can be transmitted witha narrow beam given the estimated channel. RS
  • 117. Beammanagement — P1: Initial TX beam sweep (Beam establishment): SSB (PSS/SSS/PBCH block) beam sweep and access through PRACH In this phase wide-beam is used — P2: TX beam sweep for refinement &tracking: CSI-RS narrow-beam sweep for TX refinement (from wide to narrow) and for TX tracking (narrow to narrow) — P3: UE RX Beam sweep for refinement &tracking: CSI-RS narrow-beam sweep for RX refinement (from wide to narrow) and for RX tracking (narrow to narrow) Assuming the UE use both wide &narrow beams “P1 procedure” “P2 procedure” “P3 procedure”
  • 118. • SSB consists of PSS, SSS, and PBCH • Numerology of SSB depends on frequency band • UE performs matched filtering to find PSS • 3 PSS as in LTE • UE detects in frequency-domain SSS • PSS and SSS together indicate physical Cell ID (in total 3∙336 = 1008 physical Cell IDs) SS Block (SSB) 127 SC frequency symbols PBCH PBCH PSS PBCH SSS PBCH 12 PRB 20 PRB Up to L SSB in 5 ms slots 20 ms SSB periodicity for IA Example of 120 kHz slots • L SSB can be beamformed in different directions • L depends on frequency range
  • 119. NR-SS block details – simplified example 5 ms window 1 ms 15 kHz SCS with L=4 30 kHz SCS with L=4 240 kHz SCS with L=64 30 kHz SCS with L=8 0.125 ms 120 kHz SCS with L=64 1 2 3 4 5 6 7 8 9 10 11 12 13 14 SS Block SS Block 15 kHz SCS with L=8 0.5 ms Note: The above figure shows where the SSB are transmitted within 5 ms window. The value of L is the maximum number of SSBs that can be transmitted. If the gNB transmits lesser number of SSBs in a SS burst, then it can use only subset of the resources allocated for SSB transmission
  • 120. Beammanagement Simpleexample P2: gNB refine to narrow-beam P3: UE refine it’s beams P1: establish in wide-beam
  • 121. Content • 5G overview and NR Architecture evolution. • NR spectrum | deployment options | NSA architecture | NSA bearers | ENDC configuration | VoLTE in NSA | SA architecture | Virtual RAN | ESS | ORAN • NR key techniques. • Numerology | Waveform | time and frequency structure | frame structure | TDD pattern | Ultra lean design • NR mobility corresponding features • Mobility in NSA | Anchor Control Strategies & Solutions | associated mobility features. • M-MIMO in NR • M-MIMO & AAS overview | analog and digital beamforming | beam management. • NR hardware product portfolio. • AIR overview | AIR used in NR | classical radio in NR | BB in NR • NR call flow • NSA call flow • NR performance management. • NR performance monitoring | KPI & counter monitoring in 5G
  • 124. AT&T T-Mobile Sprint Verizon U.S. Cellular 5GRAN– inMANA mmWave,midband&lowbandradios&Baseband AIR 5121 ● 28GHz AIR 5331 ● 39GHz Street Macro 6701 ● B257 (26.5–29.5 GHz); B260 (37–40 GHz) AIR 1281 ● B257 (26.5–29.5 GHz); B260 (37–40 GHz) AIR 5322 ● Band 257 (26.5 – 29.5 GHz) ●AIR 6488 ●AIR 6449 ● 2.5GHz 4449/4478 ● B71 – 600MHz ● B5 – 850MHz ●BB 6630 ●BB 6648 Source - March 2020; MANA Network Evolution
  • 125. High band mmW product
  • 126. Ericsson2018-2021High-bandproductportfolio AIR 1281 AIR 5121 AIR 5322 AIR 5331 Spectrum B261 B260 B260/B261/B258 B260/B261/B258 B260/B261 IBW 850MHz 3GHz 3GHz 3GHz 3GHz OBW 400MHz 800MHz 400/800MHz 400/800MHz 400/800MHz EIRP 55dBm 60dBm 62/59dBm 56/53dBm 56/53dBm Cooling Passive Passive Active Passive Active Dimension (liter) 16 20 6 7 13 Installation Type Pole/Wall Rooftop/Pole/Wall Rooftop/Pole/Wall Pole/Wall/Strand Pole/Wall Power AC/DC AC/DC AC/DC AC/DC AC Ericsson CPRI /TN 1-2x10G 1-4x10G 1-2x25G, 1-4x10G 1-2x25G, 1-4x10G 1-2x10G TN SM6701 n258 24 GHz n261/n257 28 GHz n260 39 GHz G1 G2 G1 G2 G2
  • 127. Available /Planned for 2020 Street Macro 6701 AIR 1281 Compact Low weight & size with or without integrated baseband AIR 7 liter, 8 kg Street macro 13 liter, 13 kg Smaller size and lower weight Lower transport requirements General Size/weight optimization Fronthaul evolution Support for all 3GPP bands Higher output power Higher uplink performance Compact and energy efficient design Integrated baseband High-bandportfolio&evolution Evolution Segments Capacity High EIRP, many beams Up to 62dBm EIRP AIR 5322 AIR 5331 B260 62dBm EIRP
  • 129. SM 6701 StreetMacro High Band base station ●Fully integrated base station ●Small form factor radio for poleand wall deployment Streetmacro 6701 ●High Band (mmWave) ●800 MHz TCBW ●EIRP: ~55 dBm ●Volume: 13 L Weight: 14 kg High Band 5G deployment solution for streetand open indoor, forspeedand capacity
  • 131. AIR 1281 General RF band support Band 257, 258B, 261, 260, 258 OOB Spurious Emission Max total EIRP TCBW IBW FCC and 3GPP compliant 53/56 dBm 800/400 MHz Fullband Interface Fronthaul IF Power Supply Typ.Power Consumption C1 CPRI, 10 and 25Gbps 100-250VAC, -48VDC < 125 W Mechanical Installation type Dimensions Weight Operating temperature IP Class Pole/Wall/Strand mounted 279x200x130 7.5kg -40°C to+55°C IP65
  • 132. AIR1281AntennaInformation ● 1 Antenna Module (PAAM) ● 4x24 subarrays where each subarray contains 2x1 dual-polarized antenna elements ● Total 384 antenna elements ● Max bandwidth/beam: ● 400MHz (4 x 100 MHz CC) ● Polarization: Hpol/Vpol Config Mode 2: — Fullarray,4x24 subarrays — Can generate2 beams, one foreachpolarization — Total CarrierBandwidth: 400MHz (Max occupied bandwidth), 400MHz/beam/polarization Config Mode 1: — Half array,2x24 subarrays — Can generate 4 beams,one foreachpolarization and arrayhalf — Total CarrierBandwidth: 800MHz (Max occupied bandwidth), 400MHz/beam/polarization
  • 133. General RF band support OOB Spurious Emission Total EIRP TCBW IBW Band 257, 258B, 261, 260, 258 FCC and 3GPP compliant 62/59 dBm 800/400 MHz Fullband Interface Fronthaul IF Power Supply Typ. Power Consumption C1 CPRI, 10 and 25Gbps 100-250VAC, -48VDC < 190 W Mechanical Installation type Dimensions Weight Operating temperature Cooling IP Class Rooftop/Pole/Wall 279x200x110 7.5kg -40°C to +55°C Active IP65 AIR 5322
  • 134. AIR5322AntennaInformation ● 1 Antenna Module (PAAM) ● 8x24 subarrays where each subarray contains 2x1 dual-polarized antenna elements ● Total 768 antenna elements ● Max bandwidth/beam: ● 400MHz ● Polarization: Hpol/Vpol Config Mode 2: — Fullarray,8x24 subarrays — Can generate2 beams, one foreachpolarization — Total CarrierBandwidth: 400MHz (Max occupied bandwidth), 400MHz/beam/polarization Config Mode 1: — Half array,4x24 subarrays — Can generate 4 beams, one foreachpolarization and arrayhalf — Total CarrierBandwidth: 800MHz (Max occupied bandwidth), 400MHz/beam/polarization Config Mode 0: — 1/4th array,2x24 subarrays — Can generate8 beams, one foreachpolarization — Total CarrierBandwidth: 800MHz (Max occupied bandwidth), 200MHz/beam/polarization
  • 137. 4 rows 24 columns 192 TRX AAS High band (AIR 5331) Antenna Branches Antenna Matrix (row x col) Weight 768T768R 4 x 24, (2x1 subarray) 14 kg
  • 138. M-MIMOSegmentation TDD AIR6488 Max performance High EIRP/Tx Power Min 200W Tx power 64 and 32 Tx/Rx Variants AIR3239 AIR3236 AIR6449 AIR3227 AIR3228 Size optimized Low-footprint segment <25 kg Up to 200W Variants AIR 32Tx, 16Tx 100W 100MHz 20Kg 200W 200MHz <25 Kg AIR3278 200W 300MHz <25 Kg 200W 100MHz 320W 200MHz 260W Dual-band ~25 Kg (tough) AIR6419 min 320W min 200MHz 320W 200MHz 32Tx (reduce cost)
  • 139. Background — Introduction of NR brings new bands overlapping existing bands — Need for align message on how toname band per products Naming rules — Call all band names “B”regardless of the 3GPP NR-band designation “n” — To not have two versions of one band, ex.B41 and n41 — The band name in the product name willmainly designate the frequency range of the product,not theRAT support — Need tocross check with SW availabily — Call LTE + NR productsby theLTE name B42(subband) or B43(subband) — Call NR-only productsby theNR band B78(subband) — Use B78 tosave subband names within B77 — Bands included in 3GPP NR band list willremain thesame regardless of RAT support (LTE and/or NR) — Ex B41 and B38 Namingrulesforradioproductsregarding differentband
  • 140. — Advanced Antenna System (AAS) — 64TX/64RX with 128 AE (B42 with 192 AE) — Up to200W — EIRP 75 dBm (band depended) — Support up to 100 MHz IBW &CBW — Support NR and LTE (band depended) — Max total carrierBW is 100MHz for NR, or 60MHz for LTE — 3 x 10 Gbps eCPRI — Weight: ~45 kg (band depended) — Size (H x W x D): ~ 800 x 400 x 150 mm (band depended) — -48 VDC (3-wire or 2-wire) — -40 ̊C to +55 ̊C — Support number of layers: DL/UL 16/8 AIR 6488 See more details in: • Product Information, AIR 6488
  • 141. Key Characteristics AIR 6488 Supported Standards EIRP (dBm) Antenna Elements Output Power (W) IBW (MHz) B42F NR 74 128 200 100 B43 NR 72 128 200 100 B41 NR & LTE+NR Split Mode 72 128 200 100 B42G NR 74 128 200 100 B78H NR 74 128 200 100 B42 NR 76 192 200 100 Dimension (HxWxD mm) Dimension (HxWxD mm) without protruding Weight without Mounting Kit (kg) B42F 810x400x200 43.5 B43 810x400x200 43.5 B41 884x520x183 58 B42G 810x400x200 43.5 B78H 810x400x200 43.5 B42 810x400x219 47
  • 142. AIR 6488 Product Frequency (MHz) PRT PRA N1 GAN1 SW AIR 6488 B78B 3500-3600 NA NA NA NA AIR 6488 B42F 3420-3600 Passed PRA1: Passed PRA2: Passed PRA3: Passed PRA4: Passed PRA5: Passed PRA6: Passed Passed 19.Q1 19.Q2 19.Q2 19.Q3 19.Q4 20.Q2 AIR 6488 B43 3600-3800 Passed PRA1: Passed PRA2: Passed PRA3: Passed PRA4: Passed PRA5: Passed PRA6: Passed PRA7: Oct-2020 Passed 19.Q1 19.Q2 19.Q2 19.Q4 20.Q2 20.Q3 20.Q4 AIR 6488 B41 2496-2690 Passed PRA1: Passed PRA2: Passed PRA3: Passed PRA4: Passed PRA5: Passed PRA6: Passed PRA6: Passed Passed 19.Q1 19.Q2 19.Q3 19.Q4 20.Q1 20.Q2 20.Q3 AIR 6488 B42 3400-3600 Passed PRA1: Passed PRA2: Passed PRA3: Passed PRA4: Passed PRA5: Passed PRA6: Passed PRA7: Oct-2020 Passed 19.Q2 19.Q2 19.Q3 19.Q4 20.Q2 20.Q3 20.Q4
  • 143. AIR 6488 Product Frequency (MHz) PRT PRA N1 GAN1 SW AIR 6488 B42G 3410-3600 Passed PRA1: Passed PRA2: Passed PRA3: Passed PRA4: Passed Passed 19.Q1 19.Q2 19.Q3 20.Q2 AIR 6488 B78H 3542-3700 Passed PRA1: Passed PRA2: Passed PRA3: Passed PRA4: Passed Passed 19.Q1 19.Q2 19.Q3 20.Q3 AIR 6488 B41K 2515-2675 Passed PRA1: Passed PRA2: Passed PRA3: Passed LA, Passed 19.Q1 19.Q2 19.Q4 AIR 6488 B41M 2590-2690 Passed PRA1: Passed PRA2: Passed LA, Passed 19.Q2 19.Q4 AIR 6488 B41N 2545-2595 NA Passed LA, Passed 19.Q4 AIR 6488 B42 JPN 3400-3600 NA PRA1: Passed PRA2: Passed LA, Passed 19.Q4 20.Q2 AIR 6488 B48 3550-3700 Passed PRA1: Passed PRA2: Passed Passed 19.Q4 19.Q4 • N(note)1: see more details in Product Information, AIR 6488
  • 144. — 64TX/64RX with 128 AE — Up to120W — EIRP max 72dBm — Up to 60 MHz IBW — Up to 3 carriers LTE — 2 x 10 Gbps eCPRI — Weight: ~ 60 kg (band depended) — Size (H x W x D): ~ 973 x 520 x 183 mm (band-depended) — -48 VDC (2-wire) — -40 ̊C to +55 ̊C — Support number of layers: DL/UL 12/6 AIR 6468 See more details in: • Product Information, AIR 6468
  • 145. AIR 6468 Product Frequency (MHz) PRT PRA (LTE only) GA(LTE only) SW AIR 6468 B41E 2575-2635 Passed Passed LA, Passed 5G Plug-Ins 17.Q4 AIR 6468 B42 3400-3600 Passed Passed Passed AIR 6468 B41 2496-2690 Passed Passed Passed AIR 6468 B40 2300-2400 Passed Passed Passed AIR 6468 B38A 2575-2615 Passed Passed Passed AIR 6468 B41C 2535-2655 Passed Passed LA, Passed MTR 19.03
  • 146. — Advanced Antenna System (AAS) — 32TX/RX with 128 AE — 100W total output power — EIRP 72 dBm (band depended) — 100 MHz IBW — Up to 3 carriers NR orLTE — Max total carrierBW is 100MHz for NR, or 60MHz for LTE — 3 x10 Gbps eCPRI (1x25 Gbps eCPRI HW prepared) — Weight: ~ 20 kg (band depended) — Size (H x W x D): ~ 530 x 411 x 122 mm (band depended) — -48 VDC 3-wire (possible to connect as 2-wire) — -40 to +55 ̊C — Support number of layers: DL/UL 12/6 AIR 3239 See more details in: • Product Information, AIR 3239
  • 147. AIR 3239 Product Frequency (MHz) PRT PRA (Note) GA SW AIR 3239 B78C 3500-3700 Passed PRA1: Passed PRA2: Passed PRA3: Passed Passed 19.Q2 IP2 19.Q2 IP2 20.Q1 AIR 3239 B78G 3600-3800 Passed PRA1: Passed PRA2: Passed PRA3: Passed Passed 19.Q3 IP1 20.Q2 20.Q2 AIR 3239 B77B 3800-4000 Passed PRA: Passed Passed 19.Q4 AIR 3239 B78F 3420-3600 Passed PRA1: Passed PRA2: Passed Passed 19.Q4 20.Q2 AIR 3239 B40 2300-2400 Passed PRA1: Passed PRA2: Passed PRA3: Passed PRA4: Dec-2020 Passed 20.Q1 20.Q1 20.Q2 20.Q4 AIR 3239 B40 AU 2300-2400 NA PRA: Passed NA 20.Q3 AIR 3239 B78Q 3300-3500 Passed PRA: Passed Passed 20.Q2.IP3 • Note: see more details in Product Information, AIR 3239
  • 148. — Advanced Antenna System (AAS) — 64TX/64RX with 192 AE — Up to 320W(band dependent) — EIRP up to 79 dBm(band dependent) — Up to 200 MHz IBW &CBW — Max total carrier BW is 200MHz for NR, or 100MHz for LTE — 4 x 25 Gbps eCPRI — Weight: 37 - 47 kg (band dependent) — Size (H x W x D): Band depended — -48 VDC (3-wire or 2-wire) — -40 to +55 ̊C — Support number of layers: DL/UL 16/8 AIR 6449 See more details in • Product Information, AIR 6449
  • 149. AIR 6449 Product Frequency (MHz) PRT PRA GA SW AIR 6449 B41K 2515-2675 Passed Passed Q3-2020 20.Q2 AIR 6449 B41 2496-2690 Passed Passed Q3-2020 20.Q3 AIR 6449 B42 3400-3600 Passed Passed Q3-2020 20.Q3 AIR 6449 B43 3600-3800 Passed Q3-2020 Q4-2020 20.Q4 AIR 6449 B78M 3450-3650 Passed Q4-2020 Q1-2021 20.Q4 AIR 6449 B77D 3700-3980 Oct-2020 Jan-2021 Mar-2021 20.Q4 AIR 6449 B78W 3300-3580 Q1-2021 Q2-2021 Q3-2021 21.Q2 AIR 6449 B79A 4800-5000 Q1-2021 Q2-2021 Q3-2021 21.Q2 See more details in • Product Information, AIR 6449
  • 150. AIR 3236 See more details in • Product Information, AIR 3236 — 32TX/RX with 192 AE — 320W total output power — EIRP ~79 dBm — 200 MHz IBW &CBW — 2 x25 (compatible to 10G) Gbps eCPRI SFP28 — Weight:27~36 kg (band depended) — Size: ~ 841H x 522W x 211D mm (band depended) — Natural convection cooling — -48 VDC 2-wire — -40 to +55 ̊C — With RET — M-MIMO layer:16DL/8UL
  • 151. AIR 3236 See more details in Product Information, AIR 3236 Frequency PRT LA GA SW B41K Released Released 2020-Oct 20.Q3 B42 Released 2020-Sep 2020-Dec 20.Q4 B41 2021-Mar 2021-May 2021-Aug 21.Q2
  • 152. — Advanced Antenna System (AAS) — 32TX/RX with 128AE — 200W total output power — EIRP 76 dBm — 200 MHz IBW&CBW — 2 x25 Gbps (compatible to 10G) eCPRI SFP28 — Weight: < 25 kg (band depended) — Size (H x W x D): band depended — -48 VDC 3-wire (possible to connect as 2-wire) — -40 to +55 ̊C — Support number of layers: DL/UL 16/8 AIR 3227 See more details in • Product Information, AIR 3227
  • 153. AIR 3227 Product Frequency (MHz) PRT PRA * GA SW AIR 3227 B43 3600-3800 Passed PRA1: Passed PRA2: Nov-2020 Jan-2021 20.Q3.IP1 TBD AIR 3227 B42 AS 3400-3600 Passed Oct-2020 Feb-2021 20.Q3.IP1 AIR 3227 B78T 3410-3610 Passed Dec-2020 Mar-2021 21.Q1 *: See more details in Product Information, AIR 3227
  • 154. — Advanced Antenna System (AAS) — 32TX/RX with 128 AE — 200W total output power — EIRP 76 dBm — 300 MHz IBW — 200 MHz OBW(CBW) — 2x 25 Gbps (compatible to 10G) eCPRI SFP28 — Weight: ~27.5 kg (band dependent) — Size (H x W x D): ~ 621 x 370 x 185 mm — Natural convection cooling — -48 VDC 3-wire (possible to connect as 2-wire) AIR 3278 See more details in • Product Information, AIR 3278
  • 155. AIR 3278 Product Frequency (MHz) PRT PRA GA SW AIR 3278 B78K 3420-3800 Passed PRA1: Dec-2020 PRA2: Q1-2021 Mar-2021 20.Q4 TBD See more details in Product Information, AIR 3278
  • 156. — Dual-Band Advanced Antenna System (AAS) — B38A (2575 - 2615MHz) and B78R (3420-3650 MHz) — 32TX/RX with 128 AE per band — 240W total output power — B38A up to 80W — B78R up to 160 W — IBW: Up to 200MHz per band — OBW (CBW): Up to 200MHz in total — B38A up to 40MHz LTE or NR — B78R up to 200MHz NR — 4x 25Gbps (compatible to 10G) eCPRI SFP28 — Size (H x W x D): ~ 841 x 524 x 220 mm — Weight: <50 kg (band dependent) — Natural convection cooling — -48 VDC 3-wire (possible to connect as 2-wire) — CEPT compliance for both bands AIR 3228 See more details in • Product Information, AIR 3228
  • 157. AIR 3228 Product Frequency (MHz) PRT PRA GA SW AIR 3228 B38A+B78R B38A: 2575-2615 B78R: 3420-3650 Oct-2020 Dec-2020 Mar-2021 20.Q4 See more details in Product Information, AIR 3228
  • 158. InterleavedAIR 3237 — Interleaved AIR. Active/Passive AAS — 32TX/RX with 128 AE — 200W total output power — EIRP 76 dBm — 300 MHz IBW — 200 MHz OBW(CBW) — 2x 25 Gbps (compatible to 10G) eCPRI SFP28 — Natural convection cooling — Weight: ~85 Kg excluding Mounting clamps (band dependent) — Size (H x W x D): ~ 2097 x 448 x 328 mm — -48 VDC — Passive port configuration — 4 Low band,698 – 960 MHz, 2m class gain — 4 High band,14xx – 2200 MHz, 1,3m class gain — 4 High band,2490 – 2690 MHz, 1,3m class gain — Individual RET
  • 159. InterleavedAIR 3237 Product Frequency (MHz) PRT PRA GA SW AIR 3237 B78K 2LBp 4HBp 2m 3420-3800 Q1-2021 TBD Q3-2021 TBD
  • 160. NR Deployment across the Network Traffic Capacity per Site Massive MIMO mm Wave 100% Classic Low Band Classic Low Band AAS 64T Mid Band 2T Radio 4T Radio 8T Radio Multi-band Radio mmWave AA ES xtreme capacity Capacity Massive MIMO A B AS oost High Capacity <--------------------------------> Coverage Low Band Classic Radios The ERS portfolio is HW prepared for NR RAN Compute HW/Basebands Sites
  • 161. Radio Dot 4479 and IRU 8884 › Non-intrusive easy-installable Radio Dot › Easy installation with standard LAN cable › Centralized baseband with macro network functional parity Distributed Indoor Coverage for 5G DOT 4479 › 5G indoor with 4x4 MIMO in small formfactor for ceiling or wall mounting 5G indoor performance in mid bands (3 - 6 GHz) OPERATOR CHALLENGE › Aggregation of up to 8 radio dots › Feed Radio Dots with signal and power over LAN cable IRU 8884 Dot 4479 IRU 8884
  • 162. Dot 4479 • Antenna Matrix • IBW • Band • Output Power • Type of cooling • Dimensions • Weight • Color • Mounting 4x4 MIMO 100 MHz B42 & additional bands 4 x 24dBm (4x250mW) Passive ~200 mm diameter < 800 g Off-white Flush mount wall or celling IRU 8884 • Fan out • Front haul • Power • Mounting 8 Dot 4479 multiplexed 10Gbps SFP/SFP CPRI -48V DC or AC 19” rack 1U Dot 4479, IRU 8884 Preliminary data
  • 163. NR NSA RDS Architecture RDI CAT 6A cable Indoor Radio Unit Baseband to radio connection Electrical or fiber Baseband (6630) Core network Radio Dot Dot 2272 (LTE) Dot 4479 (NR) IRU 88x4 (LTE) IRU 8846 (NR)
  • 164. NSANRArchitectureforRDS ENM BB6630 gNB IRU 8846 Master eNodeB (MN) eUTRAN– NRDualConnectivity(EN-DC) Secondary gNodeB (SN) CPRI IRU 88x4 4G & 5G Control traffic 10.1G CPRI C1 BB6630 eNB 5G EPC Dot 4479 NR Dot 2272 LTE Uu Non-EN-DC configured user traffic EN-DC configured user traffic Control Plane EN-DC traffic (poor quality) X2
  • 165. AccessNodeRequirements The access side requires the use of specific Basebands, Indoor Radio Units and Radio Dots for the LTE side and the NR siderespectively. NR side LTE side — BB 5212 — BB 5216 — BB 6318 — BB 6620 — BB 6630 — BB 6630 The Basebands should be chosen depending on the bandwidth required and the connectivity chosen for the deployment NR side IRU Radio Dot — IRU 8846 — Dot 4479 LTE side IRU Radio Dot — IRU 2242 — RD 2243 — RD 4442 — IRU 8844 — IRU 8884 — Dot 2272 The Indoor Radio Units should be chosen depending on the type of Radio Dot used
  • 166. ReleasedRANCompute– NRHWcapacity Baseband 6630 & 6318 — Max NR Throughput: 5Gbps/1Gbps — eCPRI (mid-band) Radio support: 3 sectors 100 MHz, 16/8 layers — High band support: 1 sectors, 800MHz, 2 layers — Low Band support: 24 carriers, 20MHz, 4T4R Baseband 5216 — Max NR Throughput: 3Gbps/0.7Gbps — Low Band Support: 12 carriers, 20MHz, 4T4R Baseband 6620, 5212, 6303 & 6502 — Max NR Throughput: 1Gbps/0,4Gbps — Low band support: 6 carriers, 20MHz, 4T4R Standard capacity High capacity
  • 167. NewRANComputeproducts– NRHWcapacity Standard capacity High capacity Indoor Outdoor Baseband 6648 — Max Throughput: 10-15Gbps/3Gbps — eCPRI support: 3 sector carriers 200MHz, 16/8 layers or 6 sector carriers 100MHz, 16/8 layers — High band support: 3 sector carriers, 800MHz, 2 layers — Low-band support: 48 sector carriers, 20MHz, 4T4R — Mid-band non-AAS support: 6 sector carriers, 100MHz, 8T8R Radio Processor 6347 — Max Throughput: 10-15Gbps/3Gbps — eCPRI support: 3 sector carriers 200MHz, 16/8 layers or 6 sectors 100MHz, 16/8 layers — High band support: 3 sector carriers, 800MHz, 2 layers Low-band support: 48 sector carriers, 20MHz, 4T4R — Mid-band non-AAS support: 6 sectorcarriers, 100MHz, 8T8R Baseband 6641 — Max Throughput: 5-7Gbps DL /2Gbps UL — eCPRI support: 3 sector carriers 100MHz, 16/8 layers — High band support: 3 sectorcarriers, 400MHz, 2 layers — Low-band support: 24 sectorcarriers, 20MHz, 4T4R — Mid-band non-AAS support: 3 sectorcarriers, 100MHz, 8T8R Radio Processor 6337 — Max Throughput: 5-7Gbps DL /2Gbps UL — eCPRI support: 3 sector carriers 100MHz, 16/8 layers — High band support: 3 sectorcarriers, 400MHz, 2 layers — Low-band support: 24 sectorcarriers, 20MHz, 4T4R — Mid-band non-AAS support: 3 sectorcarriers, 100MHz, 8T8R
  • 168. — The NR NSA may be deployed on thefollowing Baseband units: — eNB: Baseband 5216 /5212 /6630 /6620 — gNB: Baseband 6630 SupportedBasebandHW
  • 170. Content • 5G overview and NR Architecture evolution. • NR spectrum | deployment options | NSA architecture | NSA bearers | ENDC configuration | VoLTE in NSA | SA architecture | Virtual RAN | ESS | ORAN • NR key techniques. • Numerology | Waveform | time and frequency structure | frame structure | TDD pattern | Ultra lean design • NR mobility corresponding features • Mobility in NSA | Anchor Control Strategies & Solutions | associated mobility features. • M-MIMO in NR • M-MIMO & AAS overview | analog and digital beamforming | beam management. • NR hardware product portfolio. • AIR overview | AIR used in NR | classical radio in NR | BB in NR • NR call flow • NSA call flow • NR performance management. • NR performance monitoring | KPI & counter monitoring in 5G
  • 171. UE eNB gNB MME S-GW P-GW RACH msg 1 /2/3 RRC conn request RRC conn setup RRC setup complete [NAS attach request] SIB2 S1 AP : initial UE message attach request (DCNR)
  • 172. UE eNB gNB MME S-GW P-GW Initial Context Setup Request Attach accept UE Capability Enquiry UE Capability Information Authentication procedure Security mode procedure
  • 173. UE eNB gNB MME S-GW P-GW UE Capability Enquiry UE Capability Info Indication Security mode procedure RRC Connection Reconfiguration UE Capability Information
  • 174. UE eNB gNB MME S-GW P-GW Initial Context Setup Response RRC Connection Reconfiguration Complete Uplink NAS Transport [Attach Complete] [Activate Default Bearer Accept] Measurement Report SgNB Addition Request
  • 175. UE eNB gNB MME S-GW P-GW RRC Connection Reconfiguration Complete S1AP E-RAB Modification Indication SgNB Addition Request Acknowledge RRC Connection Reconfiguration SgNB Reconfiguration Complete S1AP E-RAB Modification Confirmation
  • 176. UE eNB gNB MME S-GW P-GW NR RACH Preamble (Msg1) NR PSS NR SSS NR PBCH [MIB] NR PUSCH RA Response (Msg2) Data flow over 5G Msg3
  • 177. NRLegSetup eNBtogNBrelocation,ULinLTE UE SgNB MeNB SGW MME UL/DL User data in LTE Prepare for DRB reconfiguration X2: SgNB Addition Request (RRC: CG-ConfigInfo) Allocate PDCP and SCG resources. X2: SgNB Addition Request Acknowledge (RRC: CG-Config) Suspend DRB X2: SN Status Transfer RRC Reconfiguration (“Add SCG” stop B1) LTE Random Access X2: SgNB Reconfiguration Complete UL User data in LTE (new ciphering key) RRC Reconfiguration Complete NR Random Access S1-AP: E-RAB Modification Indication S1-AP: E-RAB Modification Confirm Bearer Modification Prepared for UL data Resume DRB End marker packet New path LTE PDCP NR PDCP LTE RLC NR RLC LTE MAC NR MAC SGW S1-U S1-U X2-U LTE RLC LTE MAC RA RA MeNB SgNB DL User data in NR (new ciphering) User-plane RRC: B1 Measurement Report indicating that it has NR coverage MN terminated MCG DRB SN terminated Split DRB NR Leg Setup gNB allocate resources for PDCP and lower layer UL data stops UL flow from eNB to gNB new msg and required support in MME DL flow from gNB
  • 178. NRLegReleaseOverview — MeNB initiatedNR Leg Release triggered at: — UE detectedRLF — Failed random access — RLC UL delivery failure — Out of synchronization — SgNB initiatedNR Leg Release triggered at: — gNB detectedRLF — RLC DL delivery failure — NR celllock UE MeNB SgNB EPC NR Leg Release (gNB to eNB relocation) + Start B1 measurement SCG Failure Indication NR MeNB initiated NR Leg Release RLF, NR Cell Lock SgNB initiated NR Leg Release RLF, suspend SCG MN terminated MCG DRB SN terminated Split DRB NR Leg Release
  • 179. MeNB-initiatedNRLegRelease gNB to eNBRelocation,ULinLTE UE SgNB MeNB SGW MME E-RAB Modification Confirm Bearer Modification New path UL User data in LTE DL User data in NR UE Context Release Release resources Release resources DL User data in LTE (new ciphering) Resume DRB Trigger NR Leg Release Prepare for DRB reconfiguration SgNB Release Request SgNB Release Request Ack Suspend DRB SN Status Transfer RRC Reconfiguration (release SCG + start B1) LTE Random Access UL User data in LTE (new ciphering) RRC Reconfiguration Complete E-RAB Modification Indication
  • 180. SgNB-initiatedNRLegRelease gNBtoeNBRelocation,ULinLTE UE SgNB MeNB SGW MME Suspend DRB SN Status Transfer RRC Reconfiguration (release SCG + start B1) LTE Random Access UL User data in LTE (new ciphering) RRC Reconfiguration Complete E-RAB Modification Indication E-RAB Modification Confirm Bearer Modification UL User data in LTE DL User data in NR UE Context Release Release resources Release resources DL User data in LTE (new ciphering) Trigger NR Leg Release SgNB Release Required Prepare for DRB reconfiguration SgNB Release Confirm Resume DRB New path
  • 181. Content • 5G overview and NR Architecture evolution. • NR spectrum | deployment options | NSA architecture | NSA bearers | ENDC configuration | VoLTE in NSA | SA architecture | Virtual RAN | ESS | ORAN • NR key techniques. • Numerology | Waveform | time and frequency structure | frame structure | TDD pattern | Ultra lean design • NR mobility corresponding features • Mobility in NSA | Anchor Control Strategies & Solutions | associated mobility features. • M-MIMO in NR • M-MIMO & AAS overview | analog and digital beamforming | beam management. • NR call flow • NSA call flow • NR hardware product portfolio. • AIR overview | AIR used in NR | classical radio in NR | BB in NR • NR performance management. • NR performance monitoring | KPI & counter monitoring in 5G
  • 182. NSA performance management • Accessibility • NR RACH SR • ENDC Setup SR • Retainability • ENDC connection release from gNB • ENDC connection release from eNB • Mobility • NR NSA Intra-Frequency Intra-gNodeB PSCell Change • NR NSA Intra-Frequency Inter-gNodeB PSCell Change • Integrity • DL MAC Latency • Packet Loss • DL/UL cell Throughput • Other important PI & KPIs • Flex counters
  • 183. NRRACH:gNB — GNBDU.NRCellDU — pmRadioRaCbPreambles — pmRadioRaCbAttMsg2 — pmRadioRaCbSuccMsg3 3 1 2 3 1 2 RA SR= 100 ∗ 𝑝𝑚𝑅𝑎𝑑𝑖𝑜𝑅𝑎𝐶𝑏𝑆𝑢𝑐𝑐𝑀𝑠𝑔3 [%] 𝑝𝑚𝑅𝑎𝑑𝑖𝑜𝑅𝑎𝐶𝑏𝐴𝑡𝑡𝑀𝑠𝑔2 Counters pmRadioRaCbPreambles pmRadioRaCbAttMsg2 pmRadioRaCbFailMsg2Disc pmRadioRaCbSuccMsg3 pmRadioRaCbFailMsg3Crnti pmRadioRaCbFailMsg3Crc pmRadioRaCbFailMsg2Disc Incremented by one for each preamble discarded due to Msg2 not being sent due to expiry of the random access response window. pmRadioRaCbFailMsg3Crc Incremented by one for each msg3 received with wrong CRC. pmRadioRaCbFailMsg3Crnti Incremented by one for each msg3 received with wrong crnti.
  • 185. ENDC setup SR KPI Name KPI Formula NR_ENDC_SETUP_SR 100*(pmEndcSetupUeSucc/pmEndcSetupUeAtt) — GNBCUCP.NRCellCU — pmEndcSetupUeAtt — pmEndcSetupUeSucc MME SGW MeNB SgNB UE RRC Establishment S1AP: INITIAL CONTEXT SETUP REQUEST() Security and Capability RRC Signaling DRB + SRB2 Setup RRC Signaling S1AP: INITIAL CONTEXT SETUP RESPONSE() X2AP: SGNB ADDITION REQUEST() X2AP: SGNB ADDITION REQUEST ACKNOWLEDGE() X2AP: SN STATUS TRANSFER(PDCP COUNT) RRC: RRCConnectionReconfiguration() RRC: RRCConnectionReconfigurationComplete() X2AP: SGNB RECONFIGURATION COMPLETE() S1AP: E-RAB MODIFICATION INDICATION() S1AP: E-RAB MODIFICATION CONFIRMATION() 2 1 1 2
  • 186. NSA performance management • Accessibility • NR RACH SR • ENDC Setup SR • Retainability • ENDC connection release from gNB • ENDC connection release from eNB • Mobility • NR NSA Intra-Frequency Intra-gNodeB PSCell Change • NR NSA Intra-Frequency Inter-gNodeB PSCell Change • Integrity • DL MAC Latency • Packet Loss • DL/UL cell Throughput • Other important PI & KPIs • Flex counters
  • 187. NRLegRelease:gNB Initiated — SgNB initiated NR Leg Release triggered at: — gNB detected RLF — RLC DL delivery failure — RA Supervision timer T304 expiry — NR celllock — NR Celladmin state is “Locked”by Operator — Sector carrier “Locked”or“failed” — Lrat.EUtranCellFDD — pmEndcRelMnMcgRelocAtt — pmEndcRelMnMcgReallocSucc — GNBCUCP.NRCellCU — pmEndcRelUeAbnormalSgnb — pmEndcRelUeAbnormalSgnbAct UE SgNB MeNB SGW MME Suspend DRB SgNB Release Confirm SN Status Transfer ( If AM bearer is included) RRC Reconfiguration (release SCG + start B1) LTE Random Access UL User data in LTE (new ciphering) RRC Reconfiguration Complete E-RAB Modification Indication E-RAB Modification Confirm Bearer Modification UL User data in LTE DL User data in NR UE Context Release Release resources Release SN Term Split Bearer resource DL User data in NR (new ciphering) Trigger NR Leg Release Resume DRB 1 2 1 SgNB Release Required Prepare for DRB reconfiguration 2 3 3 KPI Name KPI Formula SgNB_Retainability_Act_Tot 100*(pmEndcRelUeAbnormalSgnb/(pmEndcRelUeNormal+pmEndcRelUeAbnormalMenb+pmEndcRe lUeAbnormalSgnb))
  • 188. NRLegRelease:eNBInitiated — MeNB initiated NR Leg Release triggered at: — UE detected RLF — Failed random access — RLC UL delivery failure — Out of synchronization (SSB) — LTE handover (pmEndcRelMnMcg don’tpeg) — Lrat.EUtranCellFDD — pmEndcRelMnMcgRelocAtt — pmEndcRelMnMcgReallocSucc — GNBCUCP.NRCellCU UE SgNB MeNB SGW MME Prepare for DRB reconfiguration SgNB Release Request Suspend DRB SN Status Transfer( If AM bearer is included) RRC Reconfiguration (release SCG + start B1(B1 is optional for LTE handover)) LTE Random Access UL User data in LTE (new ciphering) RRC Reconfiguration Complete E-RAB Modification Indication E-RAB Modification Confirm Bearer Modification New path UL User data in LTE DL User data in NR UE Context Release Release resources Release SN Term Split Bearer resource DL User data in NR (new ciphering) Resume DRB Trigger NR Leg Release SgNB Release Request Ack 1 2 1 2 — pmEndcRelUeNormal (cause code: Normal) — pmEndcRelUeAbnormalMenb (cause code: Abnormal) — pmEndcRelUeAbnormalMenbAct (cause code: Abnormal) 3 3
  • 189. UEReleasetoIDLE — Lrat.EUtranCellFDD — pmFlexErabRelNormalEnb — pmFlexErabRelMme — GNBCUCP.NRCellCU — pmEndcRelUeNormal MME SGW MeNB SgNB UE X2-AP: SGNB RELEASE REQUEST ACKNOWLEDGE() X2-AP: SN STATUS TRANSFER(PDCP COUNT) X2-AP: UE CONTEXT RELEASE() S1-AP: UE CONTEXT RELEASE COMPLETE S1-AP: CONTEXT RELEASE REQUEST() S1-AP: CONTEXT RELEASE COMMAND() RRC: RRCConnectionRelease() X2-AP: SGNB RELEASE REQUEST() 1 1 3 3 2 2 Stepped at reception of X2 Secondary gNodeB Release Request when internal cause considered normal with precondition that EN-DC NR leg setup procedure must be completed.
  • 190. NSA performance management • Accessibility • NR RACH SR • ENDC Setup SR • Retainability • ENDC connection release from gNB • ENDC connection release from eNB • Mobility • NR NSA Intra-Frequency Intra-gNodeB PSCell Change • NR NSA Intra-Frequency Inter-gNodeB PSCell Change • Integrity • DL MAC Latency • Packet Loss • DL/UL cell Throughput • Other important PI & KPIs • Flex counters
  • 192. NR NSA Intra-Frequency Intra- gNodeB PSCell Change Success rate of intra-sgNodeB Primary Secondary Cell (PSCell) change in sgNodeB for EN-DC UE connections. Intra-sgNodeB PSCell change in sgNodeB is measured in X2AP: SGNB INITIATED SGNB MODIFICATION procedure and does indicate transmission of RRC Reconfiguration Complete from UE to master eNodeB (meNodeB).
  • 193. NR NSA Intra-Frequency Inter- gNodeB PSCell Change Success rate of inter-sgNodeB Primary Secondary Cell (PSCell) change in source sgNodeB for EN-DC UE connections. Inter-sgNodeB PSCell change in source sgNodeB is measured in X2AP: SGNB CHANGE procedure and does not depend on RRC Reconfiguration Complete from UE to master eNodeB (meNodeB).
  • 194. NSA performance management • Accessibility • NR RACH SR • ENDC Setup SR • Retainability • ENDC connection release from gNB • ENDC connection release from eNB • Mobility • NR NSA Intra-Frequency Intra-gNodeB PSCell Change • NR NSA Intra-Frequency Inter-gNodeB PSCell Change • Integrity • DL MAC Latency • Packet Loss • DL/UL cell Throughput • Other important PI & KPIs • Flex counters
  • 195. Latency DL MAC latency measures MAC scheduling latency from the time when packet arrives empty DL buffer to the time when first packet is transmitted. DL MAC DRB Latency per QoS Covering non-DRX in-Sync DL MAC DRB Latency per QoS Covering DRX in-Sync
  • 197. DL/UL throughput DL MAC Cell Throughput Considering Actual PDSCH Slot Only UL MAC Cell Throughput Considering Actual PUSCH Slot Only
  • 198. NSA performance management • Accessibility • NR RACH SR • ENDC Setup SR • Retainability • ENDC connection release from gNB • ENDC connection release from eNB • Mobility • NR NSA Intra-Frequency Intra-gNodeB PSCell Change • NR NSA Intra-Frequency Inter-gNodeB PSCell Change • Integrity • DL MAC Latency • Packet Loss • DL/UL cell Throughput • Other important PI & KPIs • Flex counters
  • 199. DL/UL transport ratio UL_QPSK_TRANSPORT_RATIO ( pmMacHarqUlAckQpsk+ pmMacHarqUlNackQpsk+ pmMacHarqUlDtxQpsk)/( pmMacHarqUlAck64Qam+ pmMacHarqUlNack64Qam+ pmMacHarqUlDtx64Qam+ pmMacHarqUlAck16Qam+ pmMacHarqUlNack16Qam+ pmMacHarqUlDtx16Qam+ pmMacHarqUlAckQpsk+ pmMacHarqUlNackQpsk+ pmMacHarqUlDtxQpsk)*100 UL_16QAM_TRANSPORT_RATIO ( pmMacHarqUlAck16Qam+ pmMacHarqUlNack16Qam+ pmMacHarqUlDtx16Qam)/( pmMacHarqUlAck64Qam+ pmMacHarqUlNack64Qam+ pmMacHarqUlDtx64Qam+ pmMacHarqUlAck16Qam+ pmMacHarqUlNack16Qam+ pmMacHarqUlDtx16Qam+ pmMacHarqUlAckQpsk+ pmMacHarqUlNackQpsk+ pmMacHarqUlDtxQpsk)*100 UL_64QAM_TRANSPORT_RATIO ( pmMacHarqUlAck64Qam+ pmMacHarqUlNack64Qam+ pmMacHarqUlDtx64Qam)/( pmMacHarqUlAck64Qam+ pmMacHarqUlNack64Qam+ pmMacHarqUlDtx64Qam+ pmMacHarqUlAck16Qam+ pmMacHarqUlNack16Qam+ pmMacHarqUlDtx16Qam+ pmMacHarqUlAckQpsk+ pmMacHarqUlNackQpsk+ pmMacHarqUlDtxQpsk)*100 DL_QPSK_TRANSPORT_RATIO ( pmMacHarqDlAckQpsk+ pmMacHarqDlNackQpsk+ pmMacHarqDlDtxQpsk)/( pmMacHarqDlAck256Qam+ pmMacHarqDlNack256Qam+ pmMacHarqDlDtx256Qam+ pmMacHarqDlAck64Qam+ pmMacHarqDlNack64Qam+ pmMacHarqDlDtx64Qam+ pmMacHarqDlAck16Qam+ pmMacHarqDlNack16Qam+ pmMacHarqDlDtx16Qam+ pmMacHarqDlAckQpsk+ pmMacHarqDlNackQpsk+ pmMacHarqDlDtxQpsk)*100 DL_16QAM_TRANSPORT_RATIO ( pmMacHarqDlAck16Qam+ pmMacHarqDlNack16Qam+ pmMacHarqDlDtx16Qam)/( pmMacHarqDlAck256Qam+ pmMacHarqDlNack256Qam+ pmMacHarqDlDtx256Qam+ pmMacHarqDlAck64Qam+ pmMacHarqDlNack64Qam+ pmMacHarqDlDtx64Qam+ pmMacHarqDlAck16Qam+ pmMacHarqDlNack16Qam+ pmMacHarqDlDtx16Qam+ pmMacHarqDlAckQpsk+ pmMacHarqDlNackQpsk+ pmMacHarqDlDtxQpsk)*100 DL_64QAM_TRANSPORT_RATIO ( pmMacHarqDlAck64Qam+ pmMacHarqDlNack64Qam+ pmMacHarqDlDtx64Qam)/( pmMacHarqDlAck256Qam+ pmMacHarqDlNack256Qam+ pmMacHarqDlDtx256Qam+ pmMacHarqDlAck64Qam+ pmMacHarqDlNack64Qam+ pmMacHarqDlDtx64Qam+ pmMacHarqDlAck16Qam+ pmMacHarqDlNack16Qam+ pmMacHarqDlDtx16Qam+ pmMacHarqDlAckQpsk+ pmMacHarqDlNackQpsk+ pmMacHarqDlDtxQpsk)*100 DL_256QAM_TRANSPORT_RATIO ( pmMacHarqDlAck256Qam+ pmMacHarqDlNack256Qam+ pmMacHarqDlDtx256Qam)/( pmMacHarqDlAck256Qam+ pmMacHarqDlNack256Qam+ pmMacHarqDlDtx256Qam+ pmMacHarqDlAck64Qam+ pmMacHarqDlNack64Qam+ pmMacHarqDlDtx64Qam+ pmMacHarqDlAck16Qam+ pmMacHarqDlNack16Qam+ pmMacHarqDlDtx16Qam+ pmMacHarqDlAckQpsk+ pmMacHarqDlNackQpsk+ pmMacHarqDlDtxQpsk)*100
  • 200. Other important PI & KPIs NR_DL_RLC_AR (pmRlcArqDlAck/(pmRlcArqDlAck+pmRlcArqDlNack)) * 100 NR_UL_RLC_AR (pmRlcArqUlAck/(pmRlcArqUlAck+pmRlcArqUlNack)) * 100 KPI-BLER RLC DL 100*(pmRlcArqDlNack/(pmRlcArqDlNack+pmRlcArqDlAck)) KPI-BLER RLC UL 100*(pmRlcArqUlNack/(pmRlcArqUlNack+pmRlcArqUlAck))
  • 201. FlexibleCountersConcept — Flexiblecounters are used to ensure that each operatorcan get KPIs differentiated for a configurable set of UEs or bearers. Available in eNB since L17.A. — The Flexible counters all have prefix“pmFlex”and are visible in MOM and PM jobs — PmFlexCounterFilter MO is used to configure filterparameters for the Flexible counters. In L18.Q4 you can configure 24 filtercombinations to show 24 differentvalues; one per UE/bearer selection — In the ROP fileyou will see several instances of each Flexible counter;one for eachfiltercombination
  • 202. FlexibleCountersforNRNSA;usedineNB — A new filterparameter ENDC is defined for NR NSA, with three (minimum) levels: — 0 = Counter stepped if the UE is capable of EN-DC — 1 = Counter stepped if the UE’s EN-DC capability matches the eNB configuration (some LTE + NR frequency band combination supported by both celland UE) — 2 = Counter stepped if the UE has user plane through gNB, ieNR leg setup — If selecting filterlevel 0,allUEs covered by level 1 and 2 are covered as well — If selecting filterlevel 1,allUEs covered by level 2 are covered as well — Filtering with level 0 can be of interest in the whole LTE network, but level 1 and 2 are only applicable in EN-DC configured eNBs EN-DC stages Description 0 The Flex counter shows measurements for all connected NR capable devices in the network 1 The Flex counter shows measurements for NR capable devices where LTE capability is matched with neighbouring gNodeB 2 The Flex counter shows measurements for active NR leg for each NR capable device with matched LTE and NR capability 99 The maximum value. The Flex counter don't show any measurements as NR capable devices are released already
  • 203. Accessibility Initial E-RAB Establishment Success Rate Captured in eNodeB Measures accessibility success rate for end-user services that are carried by E-RABs included in Initial UE Context setup procedure. Consists of three parts. RRC connection part and S1 signalling connection part cannot be monitored separately for E-UTRA-NR Dual Connectivity (EN-DC) UEs.Instead, respective procedures for all LTE UEs must be used.
  • 204. Retainability E-RAB Retainability - Percentage Lost Captured in eNodeB Reflects percentage of established E-RABs for E-UTRA-NR Dual Connectivity (EN-DC) UEs that are lost with an abnormal release initiated by eNodeB. In this case, both LTE and NR service is lost
  • 205. Integrity DL PDCP UE Throughput Captured in eNodeB Measures average DL PDCP throughput for MCG radio resources monitored for E-UTRA- NR Dual Connectivity (EN-DC) UEs UL PDCP UE Throughput Captured in eNodeB Measures average UL PDCP throughput for MCG radio resources for E-UTRA-NR Dual Connectivity (EN-DC) UEs.